1. School of Microelectronic, Tianjin University, Tianjin 300072, China 2. School of Information Science and Engineering, Southeast University, Nanjing 211189, China
A new transmitter architecture was proposed to solve the high power consumption and low efficiency problems of the traditional transmitter in order to overcome the limitation of battery capacity and prolong the standby time of the chip. A two-stage ring oscillator based on injection locking technique was used to provide multiphase signal. The self-boosted charge pump circuit boosts the voltage of the multi-phase signal in order to achieve a low-voltage and low-power design. The edge combiner was used to multiply the frequency of the multiphase signal, which ensured that the pre-stage circuit can work at low frequency with low power consumption. The 433 MHz ISM transmitter was designed in a 55 nm CMOS technique for verification. The simulation results show that the output power is ?9.7 dBm. The ring oscillator and charge pump can work at a 0.6 V supply, and the edge combiner works under 1.2 V supply. The whole transmitter consumes 357.04 μW, the efficiency is 29.83%, and the layout occupies an area of 70 μm×100 μm. The simulation results show that the proposed structure has the advantages of low power consumption, high efficiency, small area and low complexity.
Meng-qian CUI,Pei-sheng ZONG,Guo WEI,Ke-ping WANG. Low-power and high-efficiency transmitter based on dual-supply voltage and frequency multiplication technique. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1294-1301.
Fig.2Low-power and high-efficiency transmitter architecture
Fig.3Injection-locked ring oscillator
Fig.4Output waves of ring oscillator
Fig.5Phase noise performance
Fig.6Structure of traditional charge pump
Fig.7Self-boosted voltage charge pump circuit
Fig.8Waveform of self-boosted voltage charge pump
Fig.9Status of MP3 during boost
Fig.10Edge combiner circuit
Fig.11Layout of proposed transmitter
Fig.12Injecting and output waveforms
Fig.13Spectrum of output waveform
Fig.14Start waveform
Fig.15Power distribution diagram
方法
工艺库
f/MHz
系统架构
S/mm2
VDD/V
调制方式
P/dBm
Pdis/μW
η/%
文献[5]方法
0.13 μm
400
延迟锁相环+边沿合成
2.5
1
FSK
?16
400
6.28
文献[8]方法
0.13 μm
400
注入锁定环形振荡器+ 边沿合成
0.04
1
FSK
?17
90
22
文献[9]方法
0.13 μm
915
模拟锁相环+功率放大器
0.29
1.2
FSK/OOK
?18.6
367/314
3.76/4.40
文献[11]方法
65 nm
915
注入锁定环形振荡器+ 功率放大器
0.038
0.8
8PSK/OPSK
?15
938
3.37
文献[12]方法
0.18 μm
315
谐波注入锁定+电容耦合倍频
0.455 7
0.8+0.2
OOK
?21.3
145
5.11
文献[13]方法
0.18 μm
432
双注入锁定环形振荡器+边沿合成
NA
1
16?QAM/MSK
?15
468
5.37
文献[14]方法
0.18 μm
400
双环形振荡器+边沿合成
0.06
0.8+0.2
BPSK
?15
330
9.58
文献[23]方法
65 nm
430/915
注入锁定环形振荡器+ 边沿合成
1.3
0.5
16?QAM/FSK
?10/?8.1
NA
15.9/23.7
文献[24]方法
0.18 μm
915
谐波注入锁定环形振荡器+边沿合成
0.041 3
NA
OOK
?14
200.9
19.82
文献[25]方法
22 nm
400
无源多相滤波器+ 边沿合成
0.03
0.4+0.2
BPSK
?17.5
67
27
本文方法
55 nm
433
注入锁定环形振荡器+ 边沿合成
0.007
0.6+1.2
FSK
?9.7
357
29.83
Tab.1Main performance comparison of low power transmitters
Fig.16Phase noise performance of frequency multiplied output
[1]
LEE M C, KARIMI-BIDHENDI A, MALEKZADEH-ARASTEH O, et al. A CMOS inductorless MedRadio OOK transceiver with a 42μW event-driven supply-modulated RX and a 14% efficiency TX for medical implants [C]// 2018 IEEE Custom Integrated Circuits Conference. San Diego: IEEE, 2018: 1-4.
[2]
YUN S J, LEE J, KANG J, et al. A low power fully integrated RF transceiver for medical implant communication [C]// 2018 IEEE International Symposium on Circuits and Systems. Florence: IEEE, 2018: 1-4.
[3]
WANG K P, QIU L, KOO J, et al Design of 1.8-mW PLL-free 2.4-GHz receiver utilizing temperature-compensated FBAR resonator[J]. IEEE Journal of Solid-State Circuits, 2018, 53 (6): 1628- 1639
doi: 10.1109/JSSC.2018.2801829
[4]
WANG K P, OTIS B, WANG Z G A 580-μW 2.4-GHz ZigBee receiver front end with transformer coupling technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28 (2): 174- 176
doi: 10.1109/LMWC.2017.2787064
[5]
RAI S, HOLLEMAN J, PANDEY J N, et al. A 500µW neural tag with 2µVrms AFE and frequency-multiplying MICS/ISM FSK transmitter [C]// 2009 IEEE International Solid-State Circuits Conference: Digest of Technical Papers. San Francisco: IEEE, 2009: 212-213.
[6]
王曾祺. WSN低功耗射频接收关键技术研究与芯片设计[D]. 南京: 东南大学, 2017. WANG Zeng-qi. Low power RF receiver key technologies research and chip design for wireless sensor network applications [D]. Nanjing: Southeast University, 2017.
[7]
周于浩. 基于注入锁定和倍频的低功耗发射机芯片设计[D]. 南京: 东南大学, 2019. ZHOU Yu-hao. Design of a low-power transmitter based on injection-locking and frequency multiplication [D]. Nanjing: Southeast University, 2019.
[8]
PANDEY J, OTIS B P A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication[J]. IEEE Journal of Solid-State Circuits, 2011, 46 (5): 1049- 1058
doi: 10.1109/JSSC.2011.2118030
[9]
JAHAN M S, LANGFORD J, HOLLEMAN J. A low-power FSK/OOK transmitter for 915 MHz ISM band [C]// 2015 IEEE Radio Frequency Integrated Circuits Symposium. Phoenix: IEEE, 2015: 163-166.
[10]
DIAO S X, ZHENG Y J, GAO Y, et al A 50-Mb/s CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60 (1): 120- 130
doi: 10.1109/TMTT.2011.2174377
[11]
IZAD M M, HENG C H. A 17pJ/bit 915MHz 8PSK/O-QPSK transmitter for high data rate biomedical applications [C]// Proceedings of the IEEE 2012 Custom Integrated Circuits Conference. San Jose: IEEE, 2012: 1-4.
[12]
DAU N, CHEN Y T, LIAO Y T. A 145μW 315MHz harmonically injection-locked RF transmitter with two-step frequency multiplication techniques [C]// 2017 IEEE MTT-S International Microwave Symposium. Honololu: IEEE, 2017: 1781-1783.
[13]
GUO Y G, MAI S P, WENG Z Y, et al. A 9.4 pJ/bit 432 MHz 16-QAM/MSK transmitter based on edge-combining power amplifier [C]// 2017 IEEE International Symposium on Circuits and Systems. Baltimore: IEEE, 2017: 1-4.
[14]
TSAI Y L, LIN C Y, WANG B C, et al A 330-μW 400-MHz BPSK transmitter in 0.18-μm CMOS for biomedical applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63 (5): 448- 452
doi: 10.1109/TCSII.2015.2505080
[15]
ZHOU Y S, YUAN F A study of the lock range of injection-locked CMOS active-inductor oscillators using a linear control system approach[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58 (10): 627- 631
doi: 10.1109/TCSII.2011.2164154
[16]
KER M D, CHEN S L, TSAI C S Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes[J]. IEEE Journal of Solid-State Circuits, 2006, 45 (5): 1100- 1107
[17]
TANZAWA T, TANAKA T A dynamic analysis of the Dickson charge pump circuit[J]. IEEE Journal of Solid-State Circuits, 1997, 32 (8): 1231- 1240
doi: 10.1109/4.604079
[18]
DICKSON J F On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique[J]. IEEE Journal of Solid-State Circuits, 1976, 11 (3): 374- 378
doi: 10.1109/JSSC.1976.1050739
[19]
ZHOU Y X, WANG Z H, WANG K P. High-efficiency charge pumps with no reversion loss by utilizing gate voltage boosting technique [C]// 2020 IEEE International Symposium on Circuits and Systems. Seville: IEEE, 2020: 1-5.
[20]
JIANG T Q, YIN J, MAK P I, et al A 0.5-V 0.4-to-1.6-GHz 8-phase bootstrap ring-VCO using Inherent non-overlapping clocks achieving a 162.2-dBc/Hz FoM[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66 (2): 157- 161
doi: 10.1109/TCSII.2018.2842185
[21]
CHEN X, BREIHOLZ J, YAHYA F B, et al Analysis and design of an ultra-low-power bluetooth low-energy transmitter with ring oscillator-based ADPLL and 4× frequency edge combiner[J]. IEEE Journal of Solid-State Circuits, 2019, 54 (5): 1339- 1350
doi: 10.1109/JSSC.2019.2896404
[22]
CHUANG C N, LIU S L A 3–8 GHz delay-locked loop with cycle jitter calibration[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55 (11): 1094- 1098
doi: 10.1109/TCSII.2008.2002561
[23]
WENG Z Y, JIANG H J, GUO Y S, et al. A 400MHz/900MHz dual-band ultra-low-power digital transmitter for biomedical applications [C]// 2020 IEEE Radio Frequency Integrated Circuits Symposium. Los Angeles: IEEE, 2020: 331-334.
[24]
LIN C C, HU H, GUPTA S. A 66.97pJ/bit, 0.0413mm2 self-aligned PLL-calibrated harmonic-injection-locked TX with > 62dBc spur suppression for IoT applications [C]// 2020 IEEE Radio Frequency Integrated Circuits Symposium. Los Angeles: IEEE, 2020: 323-326.