Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1144-1151    DOI: 10.3785/j.issn.1008-973X.2022.06.011
    
Analysis and simulation of magnetic field for robot tactile perception
Mei-jiang GUI1,2(),Xiao-hu ZHOU1(),Xiao-liang XIE1,Shi-qi LIU1,Hao LI1,2,Jin-li WANG3,Zeng-guang HOU1,2,*()
1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
Download: HTML     PDF(1891KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A sensing device with a convex structure was designed using elastic rubber and Hall devices, in order to explore the magnetic field calculation method suitable for the flexible tactile sensing device. The magnetic field generated by the deformed device was then calculated based on the magnetic equation of the Halbach cylinder. To further verify the proposed calculation method, finite element simulation models of the sensing device under different deformations were constructed and solved based on the COMSOL Multiphysics platform. Comparing the calculation results with the simulation results shows that the proposed calculation method has great applicability under different deformations. Moreover, data fitting demonstrates that the simulation value gradually approaches the theoretical value with the continuous refinement of the simulation network. The minimum error was 3.18%, proving the high consistency between the simulated value and the theoretical value.



Key wordstactile perception      elastic rubber      Hall device      Halbach cylinder      analytical calculation      finite element simulation     
Received: 21 March 2022      Published: 30 June 2022
CLC:  TP 2  
Fund:  国家自然科学基金资助项目(62003343, 62073325, U20A20224, U1913210);北京市自然科学基金资助项目(M22008);中国科学院青年创新促进会会员资助项目(2020140)
Corresponding Authors: Zeng-guang HOU     E-mail: guimeijiang2019@ia.ac.cn;xiaohu.zhou@ia.ac.cn;zengguang.hou@ia.ac.cn
Cite this article:

Mei-jiang GUI,Xiao-hu ZHOU,Xiao-liang XIE,Shi-qi LIU,Hao LI,Jin-li WANG,Zeng-guang HOU. Analysis and simulation of magnetic field for robot tactile perception. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1144-1151.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.011     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1144


面向机器人触力觉感知的磁场解析与仿真

为了探究适用于柔性机器人触力觉感知装置的磁场计算方法,利用弹性橡胶与霍尔器件设计带有凸起结构的感知装置. 利用环式Halbach阵列的磁场方程,对形变后装置的磁场进行计算. 为了验证所提出的计算方法,基于COMSOL Multiphysics平台构建并求解不同形变下感知装置的有限元仿真模型. 通过对比理论计算结果与模型仿真结果,验证了所提出的计算方法在不同形变下均有较好的适用性. 进一步的数据拟合表明,随着仿真网络的不断细化,仿真值逐渐逼近理论值,最小误差为3.18%,证明二者具有较高的一致性.


关键词: 触力觉感知,  弹性橡胶,  霍尔器件,  环式Halbach阵列,  解析计算,  有限元仿真 
Fig.1 Schematic diagram of flexible tactile sensor
Fig.2 Schematic diagram of second-oredr Halbach cylinder
Fig.3 Schematic diagram of deformed Halbach cylinder
d ai bi ao bo
mm
0.10 3.10s 2.90 4.60 4.40
0.20 3.21 2.80 4.71 4.30
0.30 3.33 2.70 4.82 4.20
0.40 3.46 2.60 4.94 4.10
0.50 3.60 2.50 5.06 4.00
0.60 3.75 2.40 5.19 3.90
0.70 3.91 2.30 5.33 3.80
0.80 4.09 2.20 5.47 3.70
0.90 4.29 2.10 5.63 3.60
1.00 4.50 2.00 5.79 3.50
1.10 4.74 1.90 5.96 3.40
1.20 5.00 1.80 6.14 3.30
1.30 5.29 1.70 6.33 3.20
1.40 5.63 1.60 6.53 3.10
1.50 6.00 1.50 6.75 3.00
Tab.1 Geometric parameters of elliptic cylinder
Fig.4 Schematic of block method
Fig.5 Heat map of magnetic field for Halbach cylinder under four different deformations and three different equal divisions
$ d/ $mm $ {B}_{\mathrm{c}}/\mathrm{m}\mathrm{T} $ $ {B}_{\mathrm{t}}/\mathrm{m}\mathrm{T} $ ${E}_{\mathrm{m} }$/%
N=16 N=32 N=48 N=64 N=80 N=96 N=112 N=128 N=144
0.10 540.14 551.03 552.52 553.54 553.32 553.77 553.89 553.94 553.90 572.16 3.18
0.20 541.16 551.57 553.85 554.38 554.59 554.72 554.91 555.00 555.07 573.60 3.23
0.30 543.58 554.12 556.08 556.49 557.08 557.19 557.36 557.52 557.75 576.16 3.20
0.40 546.79 557.38 559.01 560.24 560.38 560.73 560.76 560.94 560.81 579.99 3.29
0.50 550.85 561.47 563.56 564.30 564.60 564.52 564.86 564.92 565.02 585.25 3.46
0.60 557.21 566.69 569.89 570.76 571.01 571.15 571.29 571.30 571.31 592.13 3.52
0.70 565.92 576.82 578.92 579.75 579.87 580.08 579.92 580.23 580.48 600.84 3.39
0.80 575.28 586.54 588.57 589.37 589.44 589.60 589.83 589.90 589.98 611.62 3.54
0.90 587.83 599.18 603.12 602.14 602.42 602.70 602.67 602.67 602.72 624.74 3.46
1.00 602.58 614.23 616.54 617.39 617.55 618.15 617.91 618.02 618.38 640.50 3.45
1.10 620.49 632.49 634.79 635.50 635.96 636.26 636.14 636.26 636.48 659.26 3.46
1.20 641.58 653.93 656.20 657.08 657.35 657.83 657.79 658.04 657.93 681.43 3.43
1.30 666.77 679.59 682.13 683.13 683.35 683.54 683.64 683.73 683.75 707.47 3.35
1.40 695.35 708.90 711.46 712.31 712.66 712.82 713.40 713.34 713.41 737.94 3.32
1.50 729.39 743.55 746.09 747.10 747.75 747.71 748.19 748.05 748.10 773.48 3.27
Tab.2 Simulation and theoretical values of magnetic induction intensity
$ d/ $mm $T_{\rm{num} }/{{\rm{s}}}$ ${ {T} }_{ { {\rm{o} } }{ {\rm{u} } }{ {\rm{r} } } }/{{\rm{s}}}$
N=16 N=32 N=48 N=64 N=80 N=96 N=112 N=128 N=144
0.10 13 21 34 51 73 109 150 186 242 0.00303
0.20 11 20 34 52 72 107 147 182 245 0.00097
0.30 15 22 38 50 78 110 154 175 236 0.00107
0.40 14 23 39 50 76 105 148 173 245 0.00080
0.50 13 22 33 50 74 106 146 184 247 0.00281
0.60 14 21 37 51 74 113 149 182 249 0.00047
0.70 13 23 39 52 74 112 146 180 246 0.00040
0.80 11 20 35 49 75 106 146 186 241 0.00040
0.90 14 21 39 49 74 114 148 185 253 0.00040
1.00 11 21 38 51 78 104 144 185 247 0.00040
1.10 15 22 39 53 75 107 140 182 231 0.00038
1.20 13 22 33 52 75 104 142 185 246 0.00037
1.30 15 17 39 52 77 97 145 186 251 0.00037
1.40 13 20 34 51 75 101 143 177 232 0.00045
1.50 10 21 34 51 77 108 150 185 240 0.00044
Tab.3 Computation time of two methods under different deformations
$ d $/mm $ b $ $ l $ $ k $ $ {R}^{2} $ ${R}_{{\rm{A}}}^{2}$ RMSE
0.10 553.70 ?62.61 0.91 0.9961 0.9947 0.3239
0.20 554.82 ?55.22 0.92 0.9986 0.9981 0.1967
0.30 557.26 ?54.40 0.92 0.9949 0.9932 0.3719
0.40 560.65 ?52.01 0.92 0.9952 0.9936 0.3653
0.50 564.73 ?55.48 0.92 0.9978 0.9971 0.2460
0.60 571.26 ?43.54 0.93 0.9998 0.9998 0.0715
0.70 580.07 ?58.07 0.92 0.9978 0.997 0.2537
0.80 589.70 ?61.77 0.91 0.9979 0.9972 0.2494
0.90 602.70 ?70.88 0.91 0.9920 0.9893 0.5094
1.00 617.94 ?59.11 0.92 0.9969 0.9958 0.3274
1.10 636.13 ?62.45 0.92 0.9975 0.9967 0.2957
1.20 657.70 ?63.26 0.92 0.9968 0.9957 0.3468
1.30 683.55 ?67.03 0.92 0.9987 0.9983 0.2298
1.40 713.03 ?69.82 0.92 0.9963 0.9951 0.4088
1.50 747.84 ?72.55 0.92 0.9969 0.9959 0.3893
Tab.4 Fitting results and evaluation metrics under different deformations
[1]   ZHOU X, XIE X, LIU S, et al Surgical skill assessment based on dynamic warping manipulations[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4 (1): 50- 61
doi: 10.1109/TMRB.2022.3141313
[2]   CHEN D, SONG A, TIAN L, et al MH-Pen: a pen-type multi-mode haptic interface for touch screens interaction[J]. IEEE Transactions on Haptics, 2018, 11 (4): 555- 567
[3]   TEE B, CHORTOS A, BERNDT A, et al A skin-inspired organic digital mechanoreceptor[J]. Science, 2015, 350 (6258): 313- 316
doi: 10.1126/science.aaa9306
[4]   KIM Y, CHORTOS A, XU W, et al A bioinspired flexible organic artificial afferent nerve[J]. Science, 2018, 360 (6392): 998- 1003
doi: 10.1126/science.aao0098
[5]   ZHOU X, XIE X, FENG Z, et al A multilayer and multimodal-fusion architecture for simultaneous recog-nition of endovascular manipulations and assessment of technical skills[J]. IEEE Transactions on Cybernetics, 2020, 50 (4): 2565- 2577
[6]   宋爱国 机器人触觉传感器发展概述[J]. 测控技术, 2020, 39 (5): 2- 8
SONG Ai-guo Development of robot tactile sensor[J]. Measurement and Control Technology, 2020, 39 (5): 2- 8
[7]   宋爱国, 田磊, 倪得晶, 等 多模态力触觉交互技术及应用[J]. 中国科学: 信息科学, 2017, 47 (9): 1183- 1197
SONG Ai-guo, TIAN Lei, NI De-jing, et al Multi-mode haptic interaction technique and its application[J]. Scientia Sinica: Informationis, 2017, 47 (9): 1183- 1197
doi: 10.1360/N112017-00081
[8]   GUI M, ZHOU X, XIE X, et al Design and experiments of a novel Halbach-cylinder-based magnetic skin: a preliminary study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 9502611
[9]   YAN Y, HU Z, YANG Z, et al Soft magnetic skin for super-resolution tactile sensing with force self-decoupling[J]. Science Robotics, 2021, 6 (51): eabc8801
doi: 10.1126/scirobotics.abc8801
[10]   WANG H, DE BOER G, KOW J, et al Design methodology for magnetic field-based soft tri-axis tactile sensors[J]. Sensors, 2016, 16 (9): 1356
doi: 10.3390/s16091356
[11]   TOMO T P, REGOLI M, SCHMITZ A, et al A new silicone structure for uSkin: a soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot iCub[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 2584- 2591
doi: 10.1109/LRA.2018.2812915
[12]   ZHOU X, XIE X, LIU S, et al Learning skill characteristics from manipulations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 1- 15
[13]   XU L, GU H, CHANG M, et al Magnetic target linear location method using two-point gradient full tensor[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6007808
[14]   CHEN Y, ZHANG W, BIRD J Z, et al A 3-D analytic-based model of a null-flux Halbach array electrodynamic suspension device[J]. IEEE Transactions on Magnetics, 2015, 51 (11): 8300405
[15]   LADGHEM-CHIKOUCHE B, BOUGHRARA K, DUBAS F, et al 2-D semi-analytical magnetic field calculation for flat permanent-magnet linear machines using exact subdomain technique[J]. IEEE Transactions on Magnetics, 2021, 57 (6): 8106211
[16]   TANG W, XIAO L, XIA D, et al 2-D and 3-D analytical calculation of the magnetic field and levitation force between two Halbach permanent magnet arrays[J]. IEEE Transactions on Magnetics, 2021, 57 (4): 8300208
[17]   DU Y, ZHAO J, XIAO F, et al Partitioned stator hybrid excitation doubly salient machine with slot Halbach PM arrays[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (4): 3187- 3196
doi: 10.1109/TVT.2021.3065670
[18]   HALBACH K Strong rare earth cobalt quadrupoles[J]. IEEE Transactions on Nuclear Science, 1979, 26 (3): 3882- 3884
doi: 10.1109/TNS.1979.4330638
[19]   HALBACH K Design of permanent multipole magnets with oriented rare earth cobalt material[J]. Nuclear Instruments and Methods, 1980, 169 (1): 1- 10
doi: 10.1016/0029-554X(80)90094-4
[20]   杨海波, 刘枫, 李凡珠, 等 圆柱形橡胶试样压缩变形有限元分析的超弹性本构方程对比研究[J]. 橡胶工业, 2018, 65 (10): 1085- 1093
YANG Hai-bo, LIU Feng, LI Fan-zhu, et al Finite element analysis of compressive deformation for cylindrical rubber components based on hyperelastic constitutive models[J]. China Rubber Industry, 2018, 65 (10): 1085- 1093
doi: 10.3969/j.issn.1000-890X.2018.10.001
[1] Jian LI,Chu-yan DAI,Yang-wei WANG,Yan-ling GUO,Fu-sheng ZHA. Design and optimization of single-finger soft grasp based on strawberry curve[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1088-1096, 1134.
[2] Ji-dong LI,Ying ZHONG,Xing-fei LI. Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1676-1683.
[3] Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.
[4] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.
[5] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[6] DAI Mei-ling, YANG Fu-jun, HE Xiao-yuan, DAI Xiang-jun. Compressive mechanical properties of new type of hollow sphere structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2043-2049.
[7] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[8] FAN Hai-gui, CHEN Zhi-ping, XU Feng, TANG Xiao-yu, SU Wen-qiang. Floating-roof tanks' distortion analysis based on measured settlement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1824-1833.
[9] ZHAO Qing juan, XU Jie, SHAN De bin, GUO Bin. Numerical simulation and experimental study based on electromagnetic forming of array of micro channel[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 198-203.
[10] YANG Hong, YANG Dai-heng, ZHAO Yang. Three-dimensional finite element simulation of
static granular material pressure for steel silos
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1423-1429.
[11] TUN Gong-Bing, GU Zhi-Xin, LIU Gang, BI Yun-Bei, DONG Hui-Ti. Finite element modeling of Ti6Al4V alloy high speed cutting[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 982-987.