|
|
|
| Mechanical properties of geopolymer slurry-cemented crushed stones by self-gravity infiltration |
Zuqiang YANG( ),Zhen GUO*( ),Hengyu LIU,Changrui DONG,Beifeng LV |
| College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
|
|
|
Abstract The rapid repair of disaster-damaged highways is crucial for post-disaster rescue operations. To address this need, a novel rapid repair method using geopolymer slurry to infiltrate and cement crushed stone under self-gravity was introduced. Laboratory tests were used to investigate this process, measuring the specimens’ cementation rate and uniaxial compressive strength. On this basis, the influence of crushed stone particle size, void ratio, and the rheological properties of the cemented matrix on the cementation rate was analyzed, and the development characteristics of the mechanical properties of the specimens were discussed. A dimensionless constant was introduced to characterize the permeability of the specimens, and a predictive formula for the cementation rate that comprehensively considered the above influencing factors was further proposed. The research results indicated that the cementation rate of the specimens was significantly affected by the crushed stone particle size, void ratio, and rheological properties of the cemented matrix. Uniaxial compressive strength was increased with the increase of the cementation rates, reaching up to 6.72 MPa at 3 hours and 12.44 MPa at 6 hours. Failure modes transitioned from shear to splitting, with cemented matrix distribution types being contact cementation, non-contact cementation, and clogging.
|
|
Received: 08 December 2024
Published: 25 November 2025
|
|
|
| Fund: 国家自然科学基金资助项目(52401344);博士后基金资助项目(GZC20241516). |
|
Corresponding Authors:
Zhen GUO
E-mail: 22212021@zju.edu.cn;nehzoug@163.com
|
地聚物浆体自重入渗胶结碎石的力学性能
公路受灾损毁后的快速抢通是保障灾后救援顺利进行的关键环节,针对这一需求,本研究提出地聚物浆体自重入渗胶结碎石的新型快速修复方式,通过开展室内试验研究地聚物浆体在自重作用下入渗胶结碎石的过程,并对试样的胶结率、单轴抗压强度进行测试. 在此基础上,分析碎石粒径、孔隙比以及胶结基质流变特性对胶结率的影响规律,并探讨试样的力学性能发展特征. 引入无量纲常数对试样的可渗度进行表征并进一步提出综合考虑上述影响因素的胶结率预测公式. 研究结果表明:试样的胶结率受碎石粒径、孔隙比和胶结基质流变特性影响显著;随着胶结率的提高,试样单轴抗压强度随之提高,试样3 h抗压强度最高达到6.72 MPa,6 h抗压强度最高达到12.44 MPa;试样破坏模式由剪切破坏逐渐转变为劈裂破坏,胶结基质在碎石空隙中的分布类型主要包括接触胶结、非接触胶结和堵塞.
关键词:
胶结颗粒材料,
快速加固,
地聚物,
胶结率,
力学特性,
破坏模式
|
|
| [1] |
张杰茹. 公路受灾损毁应急恢复策略优化研究 [D]. 重庆: 重庆科技学院, 2023. ZHANG Jieru. Study on optimization of emergency recovery strategy for highway damage [D]. Chongqing: Chongqing University of Science and Technology, 2013.
|
|
|
| [2] |
郑刚, 龚晓南, 谢永利, 等 地基处理技术发展综述[J]. 土木工程学报, 2012, 45 (2): 127- 146 ZHENG Gang, GONG Xiaonan, XIE Yongli, et al State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45 (2): 127- 146
|
|
|
| [3] |
谢康, 陈晓斌, 尧俊凯, 等 高铁路基填料振动压实试验参数标准化方法与应用研究[J]. 岩石力学与工程学报, 2023, 42 (7): 1799- 1810 XIE Kang, CHEN Xiaobin, YAO Junkai, et al Study on standardization method and application of vibration compaction test parameters of high-speed railway subgrade filler[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (7): 1799- 1810
|
|
|
| [4] |
XIE K, LI T F, ZHAO Y M, et al Microstructure evolution of coarse-grained soil fillers during subgrade compaction-operation period based on CT technology[J]. Transportation Geotechnics, 2024, 47: 101279
doi: 10.1016/j.trgeo.2024.101279
|
|
|
| [5] |
黄达, 金华辉, 吴雄伟 碎石土强夯加固效果荷载试验分析[J]. 西南交通大学学报, 2013, 48 (3): 435- 440,454 HUANG Da, JIN Huahui, WU Xiongwei Plate load test investigation of dynamic compaction effect of gravel soil[J]. Journal of Southwest Jiaotong University, 2013, 48 (3): 435- 440,454
|
|
|
| [6] |
黄达, 金华辉 土石比对碎石土强夯地基加固效果影响规律瑞利波检测分析[J]. 岩土力学, 2012, 33 (10): 3067- 3072 HUANG Da, JIN Huahui Influences of soil-rock ratio on foundation with detritus soil under dynamic compaction based on Rayleigh wave detection[J]. Rock and Soil Mechanics, 2012, 33 (10): 3067- 3072
|
|
|
| [7] |
周冲. 土基强夯动力加固机理与效果评价研究 [D]. 济南: 山东大学, 2021. ZHOU Chong. Research of strengthening mechanism and effect evaluation of foundation by dynamic compaction [D]. Jinan: Shandong University, 2021.
|
|
|
| [8] |
杨溢, 卢杰, 杨志全, 等 花管注浆加固松散碎石土层试验与效果参数预测模型[J]. 农业工程学报, 2018, 34 (24): 151- 157 YANG Yi, LU Jie, YANG Zhiquan, et al Experiments and effect parameters prediction model of reinforcement loose gravel soil-layers by flower pipe grouting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (24): 151- 157
|
|
|
| [9] |
雷进生. 碎石土地基注浆加固力学行为研究 [D]. 武汉: 中国地质大学, 2013. LEI Jinsheng. Research on mechanical behavior of grout in gravelly soil foundations [D]. Wuhan: China University of Geosciences, 2013.
|
|
|
| [10] |
路乔, 杨智超, 杨志全, 等 考虑扩散路径的宾汉姆流体渗透注浆机制[J]. 岩土力学, 2022, 43 (2): 385- 394 LU Qiao, YANG Zhichao, YANG Zhiquan, et al Penetration grouting mechanism of Binham fluid considering diffusion paths[J]. Rock and Soil Mechanics, 2022, 43 (2): 385- 394
|
|
|
| [11] |
彭鹏, 彭峰, 孙振宇, 等 基于分形理论和Mori-Tanaka方法的颗粒土渗透注浆加固体性能预测方法及应用[J]. 力学学报, 2022, 54 (11): 3099- 3112 PENG Peng, PENG Feng, SUN Zhenyu, et al Property prediction methods of granular soil penetration grouting reinforced body based on fractal theory and moritanaka method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (11): 3099- 3112
|
|
|
| [12] |
KHAN M I Robust prediction models for flow and compressive strength of sustainable cement grouts for grouted macadam pavement using RSM[J]. Construction and Building Materials, 2024, 448: 138205
doi: 10.1016/j.conbuildmat.2024.138205
|
|
|
| [13] |
孙兆辉, 王铁斌, 许志鸿, 等 水泥稳定碎石强度影响因素的试验研究[J]. 建筑材料学报, 2006, 9 (3): 285- 290 SUN Zhaohui, WANG Tiebin, XU Zhihong, et al Trial study on influence factors of cement-stabilized macadam strength[J]. Journal of Building Materials, 2006, 9 (3): 285- 290
|
|
|
| [14] |
吕松涛, 郑健龙, 仲文亮 养生期水泥稳定碎石强度、模量及疲劳损伤特性[J]. 中国公路学报, 2015, 28 (9): 9- 15,45 LV Songtao, ZHENG Jianlong, ZHONG Wenliang Characteristics of strength, modulus and fatigue damage for cement stabilized macadam in curing period[J]. China Journal of Highway and Transport, 2015, 28 (9): 9- 15,45
|
|
|
| [15] |
WANG C, LIU S, LIU L, et al Deformation properties improvement of cement stabilized gravel using rubber: laboratory and field study[J]. Construction and Building Materials, 2023, 393: 131975
doi: 10.1016/j.conbuildmat.2023.131975
|
|
|
| [16] |
余睿, 丁梦茜, 程书凯, 等 海洋环境混凝土材料的耐久性评价及对策分析[J]. 防护工程, 2020, 42 (2): 71- 78 YU Rui, DING Mengxi, CHENG Shukai, et al Durability assessment and strategy analysis of concrete materials in marine environment[J]. Protective Engineering, 2020, 42 (2): 71- 78
|
|
|
| [17] |
肖建庄, 李佳彬, 孙振平, 等 再生混凝土的抗压强度研究[J]. 同济大学学报: 自然科学版, 2004, 32 (12): 1558- 1561 XIAO Jianzhuang, LI Jiabin, SUN Zhenping, et al Study on compressive strength of recycled aggregate concrete[J]. Journal of Tongji University: Natural Science, 2004, 32 (12): 1558- 1561
|
|
|
| [18] |
王佩玺, 许金余, 白二雷, 等 水热循环作用对红砂岩动态力学特性的影响规律研究[J]. 防护工程, 2018, 40 (6): 5- 10 WANG Peixi, XU Jinyu, BAI Erlei, et al Study on the dynamic mechanics behavior of red sandstone subjected to heating and water-cooling cycles[J]. Protective Engineering, 2018, 40 (6): 5- 10
|
|
|
| [19] |
乔丽苹, 刘建, 冯夏庭 砂岩水物理化学损伤机制研究[J]. 岩石力学与工程学报, 2007, 26 (10): 2117- 2124 QIAO Liping, LIU Jian, FENG Xiating Study on damage mechanism of sandstone under hydro-physico-chemical effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (10): 2117- 2124
|
|
|
| [20] |
彭瑞东, 谢和平, 鞠杨 砂岩拉伸过程中的能量耗散与损伤演化分析[J]. 岩石力学与工程学报, 2007, 26 (12): 2526- 2531 PENG Ruidong, XIE Heping, JU Yang Analysis of energy dissipation and damage evolution of sandstone during tensile process[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (12): 2526- 2531
|
|
|
| [21] |
FU T, SARACHO A C, HAIGH S K Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review[J]. Biogeotechnics, 2023, 1 (1): 100002
doi: 10.1016/j.bgtech.2023.100002
|
|
|
| [22] |
LI Y, LI Y, GUO Z, et al Durability of MICP-reinforced calcareous sand in marine environments: laboratory and field experimental study[J]. Biogeotechnics, 2023, 1 (2): 100018
doi: 10.1016/j.bgtech.2023.100018
|
|
|
| [23] |
LI Y, GUO Z, WANG L, et al Numerical study of MICP infiltration and mineralization in unsaturated soils: CaCO3 distribution and critical depth[J]. International Journal of Geomechanics, 2024, 24 (11): 04024258
doi: 10.1061/IJGNAI.GMENG-9257
|
|
|
| [24] |
LIU H, ZHANG J, XIAO Y, et al Bacterial attachment by crystal in MICP[J]. Biogeotechnics, 2024, 2 (4): 100109
doi: 10.1016/j.bgtech.2024.100109
|
|
|
| [25] |
LIU H, CHU J, KAVAZANJIAN E Biogeotechnics: a new frontier in geotechnical engineering for sustainability[J]. Biogeotechnics, 2023, 1: 100001
doi: 10.1016/j.bgtech.2023.100001
|
|
|
| [26] |
XIAO Y, ZHANG Z, STUEDLEIN A W, et al Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (12): 04021149
doi: 10.1061/(ASCE)GT.1943-5606.0002666
|
|
|
| [27] |
DELENNE J Y, TOPIN V, RADJAI F Failure of cemented granular materials under simple compression: experiments and numerical simulations[J]. Acta Mechanica, 2009, 205 (1): 9- 21
|
|
|
| [28] |
WANG W, PAN J, JIN F, et al Effect of cement matrix on mechanical properties of cemented granular materials[J]. Powder Technology, 2019, 350: 107- 116
doi: 10.1016/j.powtec.2019.03.040
|
|
|
| [29] |
QIN W, JIN F, YANG S, et al X-ray microtomography study on the cemented structure of cemented granular materials[J]. Journal of Advanced Concrete Technology, 2023, 21 (1): 1- 16
doi: 10.3151/jact.21.1
|
|
|
| [30] |
HE J, JIANG H, ZHOU Y, et al Elementary behavior of dual-particle composites cemented by self-compacting mortar: experimental and constitutive modelling[J]. Construction and Building Materials, 2022, 320: 126232
doi: 10.1016/j.conbuildmat.2021.126232
|
|
|
| [31] |
王卫. 浆体附着规律、胶结结构特征与胶结颗粒料力学特性研究 [D]. 北京: 清华大学, 2019. WANG Wei. Study on adhesion rule of cement paste, characteristics of cementing structure and mechanical behavior of cemented granular materials [D]. Beijing: Tsinghua University, 2019.
|
|
|
| [32] |
QIN W, LIN N, JIN F, et al Effects of cementing matrix characteristics and particle size on the adhesion rule and mechanical properties of cemented granular materials[J]. Construction and Building Materials, 2024, 411: 134630
doi: 10.1016/j.conbuildmat.2023.134630
|
|
|
| [33] |
JORNE F, HENRIQUES F M A, BALTAZAR L G Injection capacity of hydraulic lime grouts in different porous media[J]. Materials and Structures, 2015, 48 (7): 2211- 2233
doi: 10.1617/s11527-014-0304-9
|
|
|
| [34] |
OZGUMUS T, MOBEDI M, OZKOL U Determination of kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8 (2): 308- 318
doi: 10.1080/19942060.2014.11015516
|
|
|
| [35] |
ZHANG N, HEDAYAT A, FIGUEROA L, et al Physical, mechanical, cracking, and damage properties of mine tailings-based geopolymer: experimental and numerical investigations[J]. Journal of Building Engineering, 2023, 75: 107075
doi: 10.1016/j.jobe.2023.107075
|
|
|
| [36] |
AL-DOSSARY A A S, AWED A M, GABR A R, et al Performance enhancement of road base material using calcium carbide residue and sulfonic acid dilution as a geopolymer stabilizer[J]. Construction and Building Materials, 2023, 364: 129959
doi: 10.1016/j.conbuildmat.2022.129959
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|