Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (9): 1911-1919    DOI: 10.3785/j.issn.1008-973X.2025.09.015
    
Configuration optimization for coupled green electricity steam heating systems considering time-of-use steam pricing
Qiming BO1,2(),Meng YUAN1,Yuchao WANG3,Xiaojie LIN1,*(),Pingyuan SHI1,Zhe DAI1,Wei ZHONG1,Lingkai ZHU4
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. China Huadian Corporation Ningxia Branch, Yinchuan 750002, China
3. Hefei Thermal Power Group Co. Ltd, Hefei 230061, China
4. State Grid Shandong Electric Power Research Institute, Jinan 250003, China
Download: HTML     PDF(2114KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the challenges of high randomness on both the supply and demand sides, difficulties in integrating renewable resources, and low flexibility in industrial parks, a study on the optimal configuration of a steam heating system coupled with green electricity in industrial parks was conducted, considering time-of-use steam pricing. The aim was to enhance system economic efficiency and green electricity utilization level. A system demand response management strategy was developed based on the modeling of the steam heating system in a green electricity-coupled industrial park. By introducing time-of-use steam pricing, users were encouraged to adjust their steam usage behavior, thereby regulating user-side loads and improving system flexibility. Based on the optimized time-of-use pricing results, a bi-level optimal configuration model considering both planning and operation stages was established for the steam heating system in industrial parks. A case study based on a power plant in Zhejiang Province was conducted for validation. The comparative results showed that the proposed optimization method reduced the peak-valley load difference by 58.32%. Additionally, the optimized configuration scheme decreased the total system cost by 98200, 253700, and 182500 yuan under different scenarios with combined heat and power unit output limits of 70%, 60%, and 50%. This time-of-use steam pricing-based optimization approach provided valuable guidance for the low-carbon transition of steam heating systems in industrial parks.



Key wordssteam heating system      electric energy substitution      demand response      bi-level optimization configuration      industrial park     
Received: 27 September 2024      Published: 25 August 2025
CLC:  TK 11  
Fund:  国家重点研发计划资助项目(2023YFE0108600);国家自然科学基金资助项目(51806190).
Corresponding Authors: Xiaojie LIN     E-mail: boqm@163.com;xiaojie.lin@zju.edu.cn
Cite this article:

Qiming BO,Meng YUAN,Yuchao WANG,Xiaojie LIN,Pingyuan SHI,Zhe DAI,Wei ZHONG,Lingkai ZHU. Configuration optimization for coupled green electricity steam heating systems considering time-of-use steam pricing. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1911-1919.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.09.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I9/1911


计及分时汽价的耦合绿电蒸汽供热系统配置优化

为了应对工业园区源荷双侧随机性强、可再生资源整合困难和灵活性低的挑战,开展计及分时汽价的耦合绿电工业园区蒸汽供热系统优化配置研究,提升系统的经济性与绿电消纳水平. 基于耦合绿电工业园区蒸汽供热系统建模,开展系统需求响应管理研究,通过设置分时汽价引导用户改变用汽行为,调节用户侧负荷,提高系统灵活性. 基于分时汽价优化定价结果,建立考虑规划设计与运行调度2阶段的工业园区蒸汽供热系统双层优化配置模型. 浙江某发电厂的案例分析结果表明,本研究提出的计及分时汽价的系统优化配置方法能够使用户峰谷负荷差减少58.32%,在热电联产机组出力上限为70%、60%和50%的3种不同场景下,优化配置方案分别能够降低系统总成本9.82、25.37、18.25万元. 本研究提出的计及分时汽价的系统优化配置方法可为工业园区蒸汽供热系统低碳转型提供指导.


关键词: 蒸汽供热系统,  电能替代,  需求响应,  双层优化配置,  工业园区 
Fig.1 Energy flow diagram of coupled green electricity industrial park steam heating system basic
Fig.2 Coupled green electricity industrial park steam heating system bi-level optimization configuration framework considering time-of-use steam pricing
Fig.3 Certain power plant steam heating system topology diagram
Fig.4 Clustering results of park steam loads
用户类型峰-谷峰-平平-谷
$ {a}_{\mathrm{p}\mathrm{v}} $$ {k}_{\mathrm{p}\mathrm{v}} $$ {\varepsilon }_{\mathrm{p}\mathrm{v}}^{\mathrm{m}\mathrm{a}\mathrm{x}} $$ {a}_{\mathrm{p}\mathrm{f}} $$ {k}_{\mathrm{p}\mathrm{f}} $$ {\varepsilon }_{\mathrm{p}\mathrm{f}}^{\mathrm{m}\mathrm{a}\mathrm{x}} $$ {a}_{\mathrm{f}\mathrm{v}} $$ {k}_{\mathrm{f}\mathrm{v}} $$ {\varepsilon }_{\mathrm{f}\mathrm{v}}^{\mathrm{m}\mathrm{a}\mathrm{x}} $
第1类用户55.00.00040.0865.00.00020.0455.00.00030.06
第2类用户45.00.00050.1055.00.00030.0635.00.00040.08
第3类用户35.00.00100.2050.00.00040.0845.00.00060.12
第4类用户50.00.00150.1545.00.00060.0640.00.00100.10
Tab.1 Load response parameter settings for different types of users
时间Qhs/(t·h?1Lt/(t·h?1时间Qhs/(t·h?1Lt/(t·h?1时间Qhs/(t·h?1Lt/(t·h?1
0:00155.76154.148:00213.01202.3316:00233.19228.89
1:00154.74155.329:00246.10246.5917:00221.39223.13
2:00155.33153.9510:00244.84245.4318:00228.05226.36
3:00153.17155.6811:00234.21231.8319:00197.09191.33
4:00147.16153.4712:00245.66241.2320:00191.75185.85
5:00159.44158.1313:00242.34244.5421:00220.71203.57
6:00189.84179.9414:00241.30239.2222:00204.42202.75
7:00197.93192.3615:00235.09236.0523:00195.79198.33
Tab.2 Typical day system heat source output and user load data
Fig.5 Peak-valley period division results
Fig.6 Pareto set of time-of-use steam pricing optimization objective function
优化结果参数数值
峰时段汽价210 元
平时段汽价180 元
谷时段汽价85 元
平均峰谷负荷差32.2 t
节省购汽费用2.62 万元
峰谷汽价比2.47
Tab.3 Time-of-use steam pricing optimization results
来源CO2CONOxSO2
热电联产305.740.051.481.85
外购谷电632.400.112.073.28
外购绿电0000
Tab.4 Pollutant emission data from different sources (g·kW−1·h−1)
设备$ {C}_{i}^{\mathrm{q}} $$ {\varepsilon }_{i} $$ {r}_{i} $/%$ {l}_{i} $/a
风力机组3500 元/kW0.024822
光伏机组4000 元/kW0.020825
电锅炉1050 元/kW0.020820
熔盐蓄热50 元/(kW·h)0.002825
Tab.5 Related equipment parameters
场景QPV/MWQWT/MWQEB/MWQHS/(MW·h)$ {{C}_{\mathrm{C}}+C}_{\mathrm{M}} $/万元
100000
209.3415.2365.41169.32
3055.3050.59158.44829.23
4094.6987.59302.371427.98
Tab.6 Bi-level optimization configuration results considering time-of-use pricing-equipment capacity
场景$ {{C}_{\mathrm{C}}+C}_{\mathrm{M}} $/万元$ {C}_{\mathrm{O}} $/万元fenv(x)/万元F(x)/万元
106652.151260.927913.07
2169.326532.251310.358011.92
3829.236228.721259.748317.69
41427.986126.661268.348822.98
Tab.7 Bi-level optimization configuration results considering time-of-use pricing-economic performance
场景QPV/MWQWT/MWQEB/MWQHS/(MW·h)$ {{C}_{\mathrm{C}}+C}_{\mathrm{M}} $/万元
100000
2012.5314.56108.76209.78
3060.2453.58200.95903.13
4094.8587.70371.171440.62
Tab.8 Bi-level optimization configuration results-equipment capacity without considering time-of-use pricing-equipment capacity
场景$ {{C}_{\mathrm{C}}+C}_{\mathrm{M}} $/万元$ {C}_{\mathrm{O}} $/万元fenv(x)/万元F(x)/万元
106652.151260.927913.07
2209.786506.671305.298021.74
3903.136188.621251.318343.06
41440.626130.451270.168841.23
Tab.9 Bi-level optimization configuration results-economic performance considering time-of-use pricing-economic performance
[1]   International Energy Agency. Renewables 2020: Analysis [EB/OL]. (2020-11-10)[2024-05-15]. https://www.iea.org/reports/renewables-2020.
[2]   国家统计局. 中国统计年鉴: 2023 [EB/OL]. [2024-05-14]. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm
[3]   王旭光. 大型工业供热蒸汽管网运行状态分析及操作优化 [D]. 杭州: 浙江大学, 2015.
[4]   GUELPA E, VERDA V Thermal energy storage in district heating and cooling systems: a review[J]. Applied Energy, 2019, 252: 113474
doi: 10.1016/j.apenergy.2019.113474
[5]   GUELPA E, VERDA V Demand response and other demand side management techniques for district heating: a review[J]. Energy, 2021, 219: 119440
doi: 10.1016/j.energy.2020.119440
[6]   GUELPA E, MARINCIONI L, DEPUTATO S, et al Demand side management in district heating networks: a real application[J]. Energy, 2019, 182: 433- 442
doi: 10.1016/j.energy.2019.05.131
[7]   YANG Y, GUO S, LIU D, et al Operation optimization strategy for wind-concentrated solar power hybrid power generation system[J]. Energy Conversion and Management, 2018, 160: 243- 250
doi: 10.1016/j.enconman.2018.01.040
[8]   XU Y, SONG Y, DENG Y, et al Low-carbon economic dispatch of integrated energy system considering the uncertainty of energy efficiency[J]. Energy Reports, 2023, 9: 1003- 1010
[9]   王谦, 王斌, 刘翔 零碳交易下工业园区综合能源系统优化配置[J]. 浙江大学学报: 工学版, 2023, 57 (11): 2294- 2304
WANG Qian, WANG Bin, LIU Xiang Optimal allocation of integrated energy systems in industrial parks under zero carbon trading[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (11): 2294- 2304
[10]   陈艳波, 方哲, 张宁, 等 基于大语言模型绿电预测和绿电交易的园区综合能源系统集群多目标协同运行方法[J]. 高电压技术, 2024, 50 (7): 2849- 2863
CHEN Yanbo, FANG Zhe, ZHANG Ning, et al Multi-objective collaborative operation method for park-level integrated energy system cluster based on large language model for green electricity prediction and trading[J]. High Voltage Engineering, 2024, 50 (7): 2849- 2863
[11]   SCHLEDORN A, CHAROUSSET-BRIGNOL S, JUNKER R G, et al Frigg 2.0: integrating price-based demand response into large-scale energy system analysis[J]. Applied Energy, 2024, 364: 122960
doi: 10.1016/j.apenergy.2024.122960
[12]   邢海军, 叶宇静, 刘哲远, 等 含多种灵活性资源的综合能源系统低碳优化调度[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1243- 1254
XING Haijun, YE Yujing, LIU Zheyuan, et al Low-carbon optimal scheduling of integrated energy system considering multiple flexible resources[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1243- 1254
[13]   ZHANG M, YAN Q, GUAN Y, et al Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties[J]. Energy, 2024, 298: 131370
doi: 10.1016/j.energy.2024.131370
[14]   范帅, 郏琨琪, 郭炳庆, 等 分散式电采暖负荷协同优化运行策略[J]. 电力系统自动化, 2017, 41 (19): 20- 29
FAN Shuai, JIA Kunqi, GUO Bingqing, et al Collaborative optimal operation strategy for decentralized electric heating loads[J]. Automation of Electric Power Systems, 2017, 41 (19): 20- 29
[15]   ZHANG W, LIAN J, CHANG C Y, et al Aggregated modeling and control of air conditioning loads for demand response[J]. IEEE Transactions on Power Systems, 2013, 28 (4): 4655- 4664
doi: 10.1109/TPWRS.2013.2266121
[16]   PU L, WANG X, TAN Z, et al Feasible electricity price calculation and environmental benefits analysis of the regional nighttime wind power utilization in electric heating in Beijing[J]. Journal of Cleaner Production, 2019, 212: 1434- 1445
doi: 10.1016/j.jclepro.2018.12.105
[17]   HEMMATI M, MIRZAEI M A, ABAPOUR M, et al Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program[J]. Sustainable Cities and Society, 2021, 69: 102790
doi: 10.1016/j.scs.2021.102790
[18]   XIE T, MA K, ZHANG G, et al Optimal scheduling of multi-regional energy system considering demand response union and shared energy storage[J]. Energy Strategy Reviews, 2024, 53: 101413
doi: 10.1016/j.esr.2024.101413
[19]   ZHONG W, DAI Z, LIN X, et al Study on time-of-use pricing method for steam heating system considering user response characteristics and thermal storage capacity[J]. Energy, 2024, 296: 131056
doi: 10.1016/j.energy.2024.131056
[20]   张通, 刘理峰, 杨才明, 等 考虑需求响应和风电不确定性的能源系统调度[J]. 浙江大学学报: 工学版, 2020, 54 (8): 1562- 1571
ZHANG Tong, LIU Lifeng, YANG Caiming, et al Energy system scheduling considering demand response and wind power uncertainty[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1562- 1571
[21]   PAN C, JIN T, LI N, et al Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses[J]. Energy, 2023, 270: 126846
doi: 10.1016/j.energy.2023.126846
[22]   杨恒岳, 刘青荣, 阮应君 基于k-means聚类算法的分布式能源系统典型日冷热负荷选取[J]. 热力发电, 2021, 50 (3): 84- 90
YANG Hengyue, LIU Qingrong, RUAN Yingjun Selection of typical daily cooling and heating load of CCHP system based on k-means clustering algorithm[J]. Thermal Power Generation, 2021, 50 (3): 84- 90
[1] Didi LIU,Wenyu YANG,Zhixian LIAO,Quanjing ZHANG,Cong HU. Load scheduling and energy allocation optimization algorithm for intelligent home appliances[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 790-798.
[2] Qing-long MENG,Xiao-xiao REN,Wen-qiang WANG,Yang LI,Cheng-yan XIONG. HVAC demand response strategy experiment and simulation considering active energy storage[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1175-1184.
[3] Fu-lin ZHAO,Tong ZHANG,Guang MA,Zhe CHEN,Chuang-xin GUO,Jin-jiang ZHANG. Study on flexible operation region of power system considering source and load fluctuation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 935-947.
[4] Tong ZHANG,Li-feng LIU,Cai-ming YANG,Yi-ning ZHANG,Chuang-xin GUO,Dong XIE. Energy system scheduling considering demand response and wind power uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1562-1571.