Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (9): 1902-1910    DOI: 10.3785/j.issn.1008-973X.2025.09.014
    
Optimization strategy for smart home energy management through synergistic integration of photovoltaic systems and electric vehicles
Didi LIU1(),Songxiu ZHONG1,Yituan LIU1,Yanli ZOU1,Chaochen TANG2,*()
1. Key Laboratory of Nonlinear Circuits and Optical Communications, School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, China
2. School of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
Download: HTML     PDF(1518KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Household energy consumption is growing continuously, with uncertainties arising from photovoltaic (PV) generation and household loads. To address these issues, an optimal scheduling model for household energy management was developed. The energy storage capabilities of electric vehicle (EV) were leveraged, while battery degradation costs caused by frequent charging/discharging were accounted for. The stochastic nature of PV generation and the flexibility in power consumption of smart appliances were also synergized. A real-time energy scheduling algorithm under time-varying tariffs was proposed based on the improved Lyapunov optimization theory. EV charging/discharging was controlled, the operation of different household appliances was scheduled, and the bidirectional power transactions between households and the grid were optimized. The time-varying nature of PV generation and grid tariffs was effectively coped with. Energy utility was maximized while the waiting time delay for each household power demand was ensured not to exceed its tolerable period. Theoretical analysis showed that the proposed algorithm could drive the optimization objective to converge to the optimal value without relying on prior statistical information of the system. The effectiveness and economic efficiency of the proposed optimization strategy were verified through comparisons with existing algorithms and performance analyses under various conditions.



Key wordshome energy management      smart home      electric vehicle      Lyapunov optimization      real-time scheduling     
Received: 08 October 2024      Published: 25 August 2025
CLC:  TM 734  
Fund:  国家自然科学基金资助项目(62061006, 1216200);广西类脑计算与智能芯片重点实验室基金资助项目(BCIC-23-Z7);广西研究生教育创新计划项目(XYCS2025130).
Corresponding Authors: Chaochen TANG     E-mail: ldd866@gxnu.edu.cn;36088653@qq.com
Cite this article:

Didi LIU,Songxiu ZHONG,Yituan LIU,Yanli ZOU,Chaochen TANG. Optimization strategy for smart home energy management through synergistic integration of photovoltaic systems and electric vehicles. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1902-1910.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.09.014     OR     https://www.zjujournals.com/eng/Y2025/V59/I9/1902


协同光伏和电动汽车的智能家庭能量管理优化策略

针对家庭能耗持续增长以及光伏发电和家庭负荷带来的不确定性问题,利用电动汽车(EV)的储能特性并考虑其电池因频繁充/放电带来的容量退化成本,建立协同光伏发电随机性和智能电器用电灵活性的家庭能量管理优化调度模型. 基于改进的Lyapunov优化理论提出时变电价下的实时能量调度算法,该算法通过控制EV的充/放电、调度不同类型家庭电器的运行,以及优化家庭与电网之间的双向电力交易,应对光伏发电以及电网电价的时变性,在确保各家庭电力需求等待时延不超过可容忍期限的前提下,最大化能源效用. 理论分析表明,所提算法能够在不依赖系统先验统计信息的情况下使优化目标趋于最优值. 通过与现有算法的对比及在不同条件下的性能分析,验证了所提优化策略的有效性与经济性.


关键词: 家庭能量管理,  智能家庭,  电动汽车,  Lyapunov优化,  实时调度 
Fig.1 Schematic diagram of structure of home energy system
参数取值
时隙间隔/min15
总时隙数/个960
能量需求正态分布
电价/元0.5~2.0
β0.9
CP/(元·kW?1·h?1)1260
$\delta $/%0.27
Tab.1 Parameter setting of home energy management system
Fig.2 PV power generation for 10 days
参数类型参数数值
EV参数EV模型Tesla Model 3
电池最大容量/(kW·h)50
最大充/放电功率/(kW·(15 min)?1)11
充/放电效率0.9
驾驶活动出发时间8:00
到达时间19:00
出发前的电池电量/(kW·h)≥40
Tab.2 EV related data
Fig.3 Optimization results of home energy management
Fig.4 Relationship between EV charging-discharging and grid electricity price
Fig.5 Relationship between electricity trading with grid and grid electricity price
Fig.6 Backlog and energy distribution of different appliance queues
Fig.7 Comparison of users’ 10-day cumulative returns under different algorithms
Fig.8 Comparison of users’ 10-day cumulative returns under different weather conditions
Fig.9 Comparison of local consumption of PV generation before and after optimization
队列$ \bar t_{\mathrm{d}}/\Delta t $
本研究算法“最后期限满足”算法
电器14.0657.477
电器23.69610.395
电器33.33411.303
EV2.8606.776
Tab.3 Comparison of average delay under two algorithms
[1]   SAKAH M, DE LA RUE DU CAN S, DIAWUO F A, et al A study of appliance ownership and electricity consumption determinants in urban Ghanaian households[J]. Sustainable Cities and Society, 2019, 44: 559- 581
doi: 10.1016/j.scs.2018.10.019
[2]   HAN B, ZAHRAOUI Y, MUBIN M, et al Home energy management systems: a review of the concept, architecture, and scheduling strategies[J]. IEEE Access, 2023, 11: 19999- 20025
doi: 10.1109/ACCESS.2023.3248502
[3]   MISCHOS S, DALAGDI E, VRAKAS D Intelligent energy management systems: a review[J]. Artificial Intelligence Review, 2023, 56 (10): 11635- 11674
doi: 10.1007/s10462-023-10441-3
[4]   侯慧, 陈跃, 吴细秀, 等 非预测机制下计及碳交易的家庭能量低碳优化实时管理[J]. 电网技术, 2023, 47 (3): 1066- 1078
HOU Hui, CHEN Yue, WU Xixiu, et al Low-carbon optimal real-time management strategy for home energy considering carbon trading under non-prediction mechanisms[J]. Power System Technology, 2023, 47 (3): 1066- 1078
[5]   ZHANG R, CHENG X, YANG L Flexible energy management protocol for cooperative EV-to-EV charging[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (1): 172- 184
doi: 10.1109/TITS.2018.2807184
[6]   郑若楠, 李志浩, 唐雅洁, 等 考虑居民用户参与度不确定性的激励型需求响应模型与评估[J]. 电力系统自动化, 2022, 46 (8): 154- 162
ZHENG Ruonan, LI Zhihao, TANG Yajie, et al Incentive demand response model and evaluation considering uncertainty of residential customer participation degree[J]. Automation of Electric Power Systems, 2022, 46 (8): 154- 162
doi: 10.7500/AEPS20210404001
[7]   王玉彬, 董伟, 陈源奕, 等 基于数据驱动的家庭能量实时经济调控方法[J]. 电力系统自动化, 2022, 46 (13): 21- 29
WANG Yubin, DONG Wei, CHEN Yuanyi, et al Data-driven real-time economic regulation method for household energy[J]. Automation of Electric Power Systems, 2022, 46 (13): 21- 29
doi: 10.7500/AEPS20210517013
[8]   ALI S, ULLAH K, HAFEEZ G, et al Solving day-ahead scheduling problem with multi-objective energy optimization for demand side management in smart grid[J]. Engineering Science and Technology, an International Journal, 2022, 36: 101135
doi: 10.1016/j.jestch.2022.101135
[9]   GHOLAMPOUR K, ADABI J, GHOLINEZHAD H, et al Optimal hierarchical energy management system with plug-and-play capability for neighborhood home microgrids[J]. IEEE Transactions on Industrial Electronics, 2024, 71 (8): 9067- 9076
doi: 10.1109/TIE.2023.3319729
[10]   PRUM P, CHAROEN P, KHAN M A, et al Energy management scheme for optimizing multiple smart homes equipped with electric vehicles[J]. Energies, 2024, 17 (1): 254
doi: 10.3390/en17010254
[11]   ABDELAAL G, GILANY M I, ELSHAHED M, et al Integration of electric vehicles in home energy management considering urgent charging and battery degradation[J]. IEEE Access, 2021, 9: 47713- 47730
doi: 10.1109/ACCESS.2021.3068421
[12]   SHARDA S, SINGH M, SHARMA K Demand side management through load shifting in IoT based HEMS: overview, challenges and opportunities[J]. Sustainable Cities and Society, 2021, 65: 102517
doi: 10.1016/j.scs.2020.102517
[13]   BHAMIDI L, SIVASUBRAMANI S Optimal sizing of smart home renewable energy resources and battery under prosumer-based energy management[J]. IEEE Systems Journal, 2020, 15 (1): 105- 113
[14]   张甜, 赵奇, 陈中, 等 基于深度强化学习的家庭能量管理分层优化策略[J]. 电力系统自动化, 2021, 45 (21): 149- 158
ZHANG Tian, ZHAO Qi, CHEN Zhong, et al Hierarchical optimization strategy for home energy management based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45 (21): 149- 158
doi: 10.7500/AEPS20210331010
[15]   WEI G, CHI M, LIU Z W, et al Deep reinforcement learning for real-time energy management in smart home[J]. IEEE Systems Journal, 2023, 17 (2): 2489- 2499
doi: 10.1109/JSYST.2023.3247592
[16]   刘迪迪, 杨文宇, 廖志贤, 等 家庭智能电器负荷调度和能量分配优化算法[J]. 浙江大学学报: 工学版, 2024, 58 (4): 790- 798
LIU Didi, YANG Wenyu, LIAO Zhixian, et al Load scheduling and energy allocation optimization algorithm for intelligent home appliances[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 790- 798
[17]   ALZAHRANI A, SAJJAD K, HAFEEZ G, et al Real-time energy optimization and scheduling of buildings integrated with renewable microgrid[J]. Applied Energy, 2023, 335: 120640
doi: 10.1016/j.apenergy.2023.120640
[18]   BEER S, GOMEZ T, DALLINGER D, et al An economic analysis of used electric vehicle batteries integrated into commercial building microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3 (1): 517- 525
doi: 10.1109/TSG.2011.2163091
[19]   NEELY M J Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3 (1): 1- 211
[1] Yaoping ZENG,Yueqiang LIU,Saishen GUAN,Weiwei JIANG,Yuting XIA. Computational offloading in D2D-MEC with energy harvesting[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 967-978.
[2] Didi LIU,Wenyu YANG,Zhixian LIAO,Quanjing ZHANG,Cong HU. Load scheduling and energy allocation optimization algorithm for intelligent home appliances[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 790-798.
[3] Xi-qun CHEN,Yi-wei QIAN,Dong MO. Collaborative optimization of charging pile quantity and price for electric vehicle charging platform[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1785-1793.
[4] Kai DU,Guo-rong ZHU,Jiang-hua LU,Mu-ye PANG. Metal object detection method in wireless electric vehicle charging system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 56-62.
[5] Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1538-1547.
[6] Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.
[7] Xue XIA,Zhen ZHAO,Jin-jie ZHANG,Liang TANG. Mechanical integrity of cylindrical automotive lithium-ion batteries and modules[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2134-2141.
[8] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[9] Xia SHANG,Mei-jia WANG,Liu-xiao XU,Li-hui ZHANG. Configuration optimization of electric vehicle charging facilities in urban areas[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1210-1217.
[10] CHU Liang, LI Tian-jiao, SUN Cheng-wei. Research on adaptive cruise control strategy for electric vehicle based on optimization of regenerative braking[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1596-1602.
[11] SUN Yue, JIA Xin, TANG Chun-sen. Pick-up position detection for WPT-EV based on three-coil synthesis algorithm[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 984-991.
[12] PAN Ning, YU Liang yao, ZHANG Lei, SONG Jian, ZHANG Yong hui. Anti-lock braking control in coordinated braking system considering braking comfort[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 9-16.
[13] YE Li ya, WANG Zhen, WEN Fu shuan, YANG Jun, JIANG Dao zhuo. Economic benefit evaluation of V2G aggregator for frequency regulation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1831-1840.
[14] MA Hao jun, ZHU Shao peng, YU Xiao li, XU Yin chuan, LIN Ding. Electronic differential control considering rolling movement for electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 566-573.
[15] JIANG Dong dong, LI Dao fei, YU Xiao li. Energy management strategy of dual drive hybrid electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2245-2253.