Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (9): 1775-1783    DOI: 10.3785/j.issn.1008-973X.2025.09.001
    
Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection
Wenxin CHENG(),Guanghui YAN*(),Wenwen CHANG,Baijing WU,Yaning HUANG
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(1789KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multimodal feature fusion model based on non-smooth non-negative matrix factorization (nsNMF-PCNN-GRU-MSA) was proposed to address the problems of poor generalisation ability, single feature extraction mode and model uninterpretability in the fatigue driving detection methods. This model detected the level of driver fatigue by analyzing electroencephalogram (EEG) signals. A channel weighting module was designed in the shallow layer of the network, and the non-smooth non-negative matrix factorization (nsNMF) algorithm was introduced to compute the contribution of the electrode channels. A multimodal feature fusion module was designed in the middle layer of the network, where the Gramian angular field imaging method was introduced to map the 1D EEG data into a 2D image, and the spatio-temporal features of different modes were fused in parallel with the PCNN-GRU module. The multi-head self-attention (MSA) mechanism was fused in the deep layer of the network to complete the task of fatigue driving state classification. The experimental results showed that the fatigue detection accuracies of the model on the mixed samples of the SEED-VIG and SAD datasets were 93.37% and 90.78%, respectively, and the lowest accuracies for single-subject data were 86.60% and 85.59%, respectively, which were higher than those of the state-of-the-art models. The analysis method of mapping the feature activation values onto the brain topology map not only improves the interpretability of the model, but also provides a new perspective on fatigue driving detection.



Key wordsEEG      fatigue driving detection      nsNMF      Gramian angular field      multimodal feature fusion      model interpretability     
Received: 20 November 2024      Published: 25 August 2025
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(62466032, 62366028, 62062049);甘肃省自然科学基金资助项目(24JRRA256);甘肃省教育厅青年博士项目(2023QB-038);青海省昆仑英才高端创新创业人才计划资助项目(QHKLYC-GDCXCY-2022-171).
Corresponding Authors: Guanghui YAN     E-mail: xncycwx@163.com;yanguanghui@mail.lzjtu.cn
Cite this article:

Wenxin CHENG,Guanghui YAN,Wenwen CHANG,Baijing WU,Yaning HUANG. Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1775-1783.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.09.001     OR     https://www.zjujournals.com/eng/Y2025/V59/I9/1775


基于通道加权的多模态特征融合用于EEG疲劳驾驶检测

针对疲劳驾驶检测方法泛化能力差、特征提取模式单一、模型不可解释等问题,提出多模态特征融合模型nsNMF-PCNN-GRU-MSA,通过分析驾驶员脑电图(EEG)信号实现疲劳程度的检测. 在网络浅层设计通道加权模块,引入非平滑非负矩阵分解(nsNMF)算法计算电极通道的贡献度;在网络中层设计多模态特征融合模块,引入格拉姆角场成像方法将一维EEG数据映射成二维图像,并采用PCNN-GRU并行方式融合不同模态的时空特征;在网络深层融合多头自注意力机制(MSA),完成疲劳驾驶状态分类任务. 实验结果表明,该模型在数据集SEED-VIG和SAD的混合样本上的疲劳检测准确率分别为93.37%、90.78%,单个被试数据准确率最低分别为86.60%、85.59%,高于近年先进模型. 将特征激活值映射到大脑拓扑图上的分析方法不仅提高了模型的可解释性,而且为疲劳驾驶检测提供了新视角.


关键词: EEG,  疲劳驾驶检测,  nsNMF,  格拉姆角场,  多模态特征融合,  模型可解释性 
Fig.1 Framework diagram of multimodal feature fusion model nsNMF-PCNN-GRU-MSA
Fig.2 Multi-head self-attention structure
评估指标计算方法
A(TP+TN)/(TP+FP+FN+TN)×100%
PTP/(TP+FP)×100%
STP/(TP+FN)×100%
M1–A
F1P×S/(P+S)×100%
Tab.1 Calculation of evaluation indicators
rSEED-VIGSAD
权重维度A权重维度A
117×10.930 132×10.901 7
217×20.933 732×20.907 8
317×30.932 132×30.895 3
417×40.928 232×40.902 4
517×50.929 732×50.900 5
Tab.2 Comparison of fatigue driving recognition accuracy when choosing different r-values
方法APSMF1
D1D2D1D2D1D2D1D2D1D2
未计算DE特征0.665 10.702 40.801 50.777 10.702 20.731 90.334 90.297 60.755 30.731 0
未计算通道贡献度0.861 90.825 50.896 40.865 10.876 60.799 00.138 10.174 50.889 50.878 9
仅使用GASF0.917 40.891 70.951 10.904 40.917 60.867 40.082 60.108 30.934 10.920 7
仅使用GADF0.897 20.902 20.908 70.912 50.923 00.903 30.102 80.097 80.915 80.902 2
未融合GRU0.906 40.899 30.922 90.909 90.924 70.895 40.093 60.100 70.923 90.914 8
未加入MSA0.904 00.882 40.925 90.921 30.915 60.908 70.096 00.117 60.921 10.907 7
本研究方法0.933 70.907 80.955 90.924 60.934 50.919 70.066 30.092 20.945 10.922 1
Tab.3 Ablation experimental results using mixed data from all subjects
D1D2
被试PCNNGRUPCNN-GRU被试PCNNGRUPCNN-GRU
10.956 70.917 90.951 810.862 50.852 50.885 8
20.947 70.932 20.971 420.900 60.910 70.919 0
30.977 40.978 90.963 930.880 40.899 20.908 6
40.783 10.797 40.908 940.872 50.888 10.890 2
50.865 20.882 50.912 750.920 10.910 90.922 6
60.819 30.790 70.874 360.862 20.854 40.865 6
70.893 10.856 90.941 370.901 40.900 90.919 4
80.910 80.923 20.942 880.833 10.829 90.855 9
90.939 80.956 30.970 690.921 80.919 10.930 5
100.982 70.985 70.970 6100.882 50.878 90.870 6
110.878 80.881 80.936 8110.939 80.946 00.947 3
120.825 00.820 00.872 0120.860 10.855 50.866 3
130.896 10.914 90.923 2130.921 70.933 90.948 8
140.920 90.925 50.931 5140.844 80.858 50.868 7
150.980 00.970 00.990 0150.931 50.933 10.945 4
160.839 90.838 10.875 0160.939 90.928 70.932 6
170.817 40.832 80.908 9170.845 80.813 90.881 1
180.874 30.917 90.929 2180.877 20.892 50.904 8
190.978 20.985 70.987 9190.910 50.909 10.914 5
200.951 10.930 70.869 7200.862 20.844 20.874 8
210.959 00.941 30.988 0210.939 30.940 10.949 6
220.991 70.991 00.988 7220.909 90.912 90.937 8
230.952 60.939 80.866 0230.948 80.932 40.956 6
平均准确率0.910 50.909 20.933 7240.890 10.909 30.898 6
标准差0.061 30.059 80.041 1250.878 70.856 70.904 4
260.889 40.848 40.903 1
平均准确率0.893 30.890 80.907 8
标准差0.032 40.036 80.029 9
Tab.4 Comparison of fatigue driving detection accuracy for single-subject data
方法APSMF1
D1D2D1D2D1D2D1D2D1D2
RF[26]0.740 00.668 00.740 00.698 90.540 00.639 80.260 00.332 00.540 00.611 1
LSTM[27]0.881 30.853 50.914 70.889 00.884 60.877 40.118 70.146 50.898 20.857 7
EEG-Conv[28]0.779 60.802 20.853 90.882 60.585 30.662 50.220 40.197 80.632 70.652 4
EEG-TCNet[29]0.813 30.851 50.697 70.800 50.674 30.700 40.186 70.148 50.674 30.708 8
EEGNet[30]0.798 90.643 50.745 20.625 50.752 20.653 10.201 10.356 50.744 20.621 1
ESTCNN[31]0.790 60.772 40.767 10.797 90.789 80.766 50.209 40.227 60.779 60.795 8
CSF-GTNet[15]0.821 10.841 50.772 30.833 40.843 30.841 90.178 90.158 50.780 90.814 9
T-A-MFFNet[5]0.858 60.865 40.733 90.892 30.826 50.843 70.141 40.134 60.777 40.800 5
本研究方法0.933 70.907 80.955 90.924 60.934 50.919 70.066 30.092 20.945 10.922 1
Tab.5 Comparative experimental results of different models with the same dataset and the same classification task
Fig.3 Brain topography of electrode channel characteristic activation values in different driving states
[1]   HAN W, ZHAO J Driver behaviour and traffic accident involvement among professional urban bus drivers in China[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74 (1): 184- 197
[2]   SINGH S. Critical reasons for crashes investigated in the national motor vehicle crash causation survey [EB/OL]. (2015-03-19). https://trid.trb.org/view/1346216.
[3]   COETZER R C, HANCKE G P. Eye detection for a real-time vehicle driver fatigue monitoring system [C]// 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden: IEEE, 2011: 66–71.
[4]   ZONG S, DONG F, CHENG Y, et al Application and challenges of EEG signals in fatigue driving detection[J]. Progress in Biochemistry and Biophysics, 2024, 51 (7): 1645- 1669
[5]   PENG B, ZHANG Y, WANG M, et al T-A-MFFNet: multi-feature fusion network for EEG analysis and driving fatigue detection based on time domain network and attention network[J]. Computational Biology and Chemistry, 2023, 104: 107863
doi: 10.1016/j.compbiolchem.2023.107863
[6]   ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35 (20): 14681- 14722
doi: 10.1007/s00521-021-06352-5
[7]   WU E Q, ZHU L M, ZHANG W M, et al Novel nonlinear approach for real-time fatigue EEG data: an infinitely warped model of weighted permutation entropy[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (6): 2437- 2448
[8]   WANG F, WU S, ZHANG W, et al Multiple nonlinear features fusion based driving fatigue detection[J]. Biomedical Signal Processing and Control, 2020, 62 (4): 102075
doi: 10.1016/j.bspc.2020.102075
[9]   WU E Q, XIONG P, TANG Z R, et al Detecting dynamic behavior of brain fatigue through 3-D-CNN-LSTM[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (1): 90- 100
doi: 10.1109/TSMC.2021.3062715
[10]   YANG Y, WU Q, FU Y, et al. Continuous convolutional neural network with 3D input for EEG-based emotion recognition [C]// Neural Information Processing: 25th International Conference. Cambodia: Springer, 2018: 433–443.
[11]   王海玉, 王映龙, 闵建亮, 等 集成3种不同核分类器的疲劳脑电分类[J]. 计算机工程与设计, 2019, 40 (6): 1757- 1762
WANG Haiyu, WANG Yinglong, MIN Jianliang, et al Fatigue EEG classification by integrating three different kernel classifiers[J]. Computer Engineering and Design, 2019, 40 (6): 1757- 1762
[12]   CHAUDHURI A, ROUTRAY A Driver fatigue detection through chaotic entropy analysis of cortical sources obtained from scalp EEG signals[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (1): 185- 198
[13]   常文文, 闫光辉, 杨志飞, 等. 基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测 [J]. 电子学报, 2023, 51(10): 2874–2883.
CHANG Wenwen, YAN Guanghui, YANG Zhifei, et al. Detection of driving state under different curve road based on entropy and functional connectivity of EEG [J]. Acta Electronica Sinica, 2023, 51(10): 2874–2883.
[14]   SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
[15]   GAO D, LI P, WANG M, et al CSF-GTNet: a novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28 (5): 2558- 2568
doi: 10.1109/JBHI.2023.3240891
[16]   SHI J, WANG K Fatigue driving detection method based on time-space-frequency features of multimodal signals[J]. Biomedical Signal Processing and Control, 2023, 84 (11): 104744
[17]   JIA H, XIAO Z, JI P End-to-end fatigue driving EEG signal detection model based on improved temporal-graph convolution network[J]. Computers in Biology and Medicine, 2023, 152 (1): 106431
[18]   ZHENG W L, LU B L A multimodal approach to estimating vigilance using EEG and forehead EOG[J]. Journal of Neural Engineering, 2017, 14 (2): 026017
doi: 10.1088/1741-2552/aa5a98
[19]   DINGES D F, PACK F, WILLIAMS K, et al Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night[J]. Sleep, 1997, 20 (4): 267- 277
[20]   CAO Z, CHUANG C H, KING J K, et al Multi-channel EEG recordings during a sustained-attention driving task[J]. Scientific Data, 2019, 6 (1): 19
doi: 10.1038/s41597-019-0027-4
[21]   ZHANG X, YAO L, KANHERE S S, et al Mindid: person identification from brain waves through attention-based recurrent neural network[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2 (3): 149
[22]   LI X, TANG J, LI X, et al CWSTR-Net: a channel-weighted spatial-temporal residual network based on nonsmooth nonnegative matrix factorization for fatigue detection using EEG signals[J]. Biomedical Signal Processing and Control, 2024, 97 (6): 106685
[23]   WANG F, MA M, ZHANG X Study on a portable electrode used to detect the fatigue of tower crane drivers in real construction environment[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2506914
[24]   仝航, 杨燕, 江永全 检测脑电癫痫的多头自注意力机制神经网络[J]. 计算机科学与探索, 2023, 17 (2): 442- 452
TONG Hang, YANG Yan, JIANG Yongquan Multi-head self-attention neural network for detecting EEG epilepsy[J]. Computer Science and Exploration, 2023, 17 (2): 442- 452
[25]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems. California: IEEE, 2017: 6000–6010.
[26]   HIDALGO ROGEL J M, MARTÍNEZ BELTRÁN E T, QUILES PÉREZ M, et al Studying drowsiness detection performance while driving through scalable machine learning models using electroencephalography[J]. Cognitive Computation, 2024, 16 (3): 1253- 1267
[27]   HOCHREITER S Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[28]   ZENG H, YANG C, DAI G, et al EEG classification of driver mental states by deep learning[J]. Cognitive Neurodynamics, 2018, 12 (6): 597- 606
[29]   INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces [C]// 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Toronto: IEEE, 2020: 2958–2965.
[30]   LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
[31]   GAO Z, WANG X, YANG Y, et al EEG-based spatio-temporal convolutional neural network for driver fatigue evaluation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (9): 2755- 2763
doi: 10.1109/TNNLS.2018.2886414
[32]   BAGHERZADEH S, SHALBAF A EEG-based schizophrenia detection using fusion of effective connectivity maps and convolutional neural networks with transfer learning[J]. Cognitive Neurodynamics, 2024, 18 (5): 2767- 2778
doi: 10.1007/s11571-024-10121-0
[33]   周逸凡, 张灵维, 周正东, 等 基于注意力机制和深度学习的群体语言想象脑电信号分类[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2540- 2546
ZHOU Yifan, ZHANG Lingwei, ZHOU Zhengdong, et al Classification of group speech imagined EEG signals based on attention mechanism and deep learning[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2540- 2546
[1] Zhentao DONG,Kaimin XU,Qingying WAN,Xiaofei LIU,Hao SHEN,Shuhan LI,Geqi QI. Multimodal emotional feature analysis based on short video resources of traffic incidents[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 661-668.
[2] Yixuan LI,Ying LI,Qian XIAO,Lingyue WANG,Ning YIN,Shuo YANG. EEG microstate functional network analysis of different emotional false memories[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 49-61.
[3] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[4] Yue LIU,Xueying ZHANG,Guijun CHEN,Lixia HUANG,Ying SUN. EEG-fNIRS emotion recognition based on multi-brain attention mechanism capsule fusion network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2247-2257.
[5] Guo-mei JIN,Qing-shan SHE,Min ZHANG,Yu-liang MA,Jian-hai ZHANG,Ming-xu SUN. Functional cortical muscle coupling method of multi-scale compensated transfer entropy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1152-1158, 1256.
[6] Chao-bo ZHANG,Yong-zheng LIU,Hong-bo LI,Yang ZHAO,Li-zhu ZHANG,Zi-hao WANG. Weighted residual clustering-based building load prediction interval estimation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 930-937.
[7] Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN. IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 745-753, 782.
[8] Ya-jing WANG,Qun WANG,Bo-wen LI,Zhi-wen LIU,Yuan-yuan PIAO,Tao YU. Seizure prediction based on pre-ictal period selection of EEG signal[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2258-2265.
[9] WANG Wei-xing, SUN Shou-qian, LI Chao, TANG Zhi-chuan. Recognition of upper limb motion intention of EEG signal based on convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1381-1389.
[10] TONG Ji-jun, LI Lin, LIN Qin-guang, ZHU Dan-hua. SSVEP brain-computer interface (BCI) system using smoothed pseudo Wigner-Ville distribution[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 598-604.
[11] YANG Bang-hua, HE Mei-yan, LIU Li, LU Wen-yu. EEG classification based on batch incremental SVM in
brain computer interfaces
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1431-1436.
[12] ZHU Dan-hua, CHEN Da-jing, CHEN Yu-quan, PAN Min. Enhancement of steady-state visual evoked potentials using
parameter-tuned stochastic resonance
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 918-922.
[13] SHU Dan-Hua, TONG Ji-Jun, BO Min, DENG. Electroencephalogram on pain relief of transcutaneous electrical acupoint stimulation[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(12): 2319-2322.