Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1547-1556    DOI: 10.3785/j.issn.1008-973X.2025.07.023
    
Deep learning hybrid agent model for atmospheric environment parameter calibration in high-precision measurement devices
Xinbo YUAN1(),Zhaobin XU1,2,*(),Ziru LI1,Jian PAN1,Xiaojun JIN1,2,3,Zhonghe JIN1,2,3
1. Micro-Satellite Research Center, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Micro-Nano Satellite Research of Zhejiang Province, Hangzhou 310027, China
3. Huanjiang Laboratory, Zhuji 311899, China
Download: HTML     PDF(1398KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A high-precision physical field hybrid agent fitting model based on deep learning theory was proposed, in order to improve the compensation accuracy of a measurement device for the atmospheric refraction index in-field calibration. The sensor array was expanded by forward and backward time series prediction, the atmospheric refraction compensation system was optimized by obtaining high-accuracy environmental parameters, and the density distribution of sensor array observation points was increased at the same moment. Taking the temperature field among meteorological parameters as an example, simulation results show that the proposed model achieves higher accuracy than traditional multi-point compensation models. The proposed model improved the accuracy of environmental parameters by 71.8% and reduced the standard deviation by 73.1%. Monte Carlo simulation analysis demonstrates that the proposed model exhibits stronger stability compared to traditional multi-point methods.



Key wordsmeasurement device      environmental parameter      sensor array      time series analysis      radial basis function interpolation     
Received: 26 June 2024      Published: 25 July 2025
CLC:  TN 98  
Fund:  国家自然科学基金资助项目(U21A20443,62073289).
Corresponding Authors: Zhaobin XU     E-mail: xinbo@zju.edu.cn;zjuxzb@zju.edu.cn
Cite this article:

Xinbo YUAN,Zhaobin XU,Ziru LI,Jian PAN,Xiaojun JIN,Zhonghe JIN. Deep learning hybrid agent model for atmospheric environment parameter calibration in high-precision measurement devices. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1547-1556.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.023     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1547


高精度测量装置大气环境参数校准深度学习混合代理模型

为了提高测量装置在野外校准时的大气折射率补偿精度,提出基于深度学习理论的高精度物理场混合代理拟合模型. 正逆向时间序列预测扩充传感器阵列,获取高精度的环境参数优化大气折射补偿系统,增加同一时刻传感器阵列观测点位的分布密集程度. 以气象参数中的温度场为例,仿真结果表明,所提模型相较于传统多点法补偿模型具有更高的精度,所提模型使环境参数的精度提高了71.8%,标准差降低了73.1%. 蒙特卡洛仿真分析的结果证明,所提模型相较于传统多点法具有更强的稳定性.


关键词: 测量装置,  环境参数,  传感器阵列,  时间序列分析,  径向基函数插值 
Fig.1 Architecture diagram of typical 1D convolutional neural network
Fig.2 Performance comparison for activation functions
Fig.3 Model for expanding sensor array based on deep learning
Fig.4 Schematic diagram of reverse time series analysis
Fig.5 Model of expanding sensor array based on forward and backward time series
Fig.6 Runge’s phenomenon caused by high-order interpolation
Fig.7 Algorithm framework for combination of radial basis function interpolation and polynomial fitting
Fig.8 Simulation model for range measurement environment
Fig.9 Simulation comparision chart of expanding sensor array
Fig.10 Comparison of average temperature deviation before and after expanding sensor array
dlog (RMSE)dlog (RMSE)
5?3.0411?3.18
7?3.4113?1.39
9?3.47
Tab.1 Logarithmic root mean square error for polynomial fittings of different degrees
Fig.11 Physical field for different interpolation methods
Fig.12 Loss function during polynomial fitting (root mean square error as loss function)
Fig.13 Fitting loss function with adaptive regularization
Fig.14 Regularization effects during polynomial fitting
Fig.15 Normal distribution analysis of Monte Carlo simulation
方法$\mu $$\sigma $
多点法$ 1.71 \times {10^{ - 2}} $$1.31 \times {10^{ - 2}}$
时间序列+多点法$5.44 \times {10^{ - 3}}$$ 4.01 \times {10^{ - 3}} $
时间序列+插值拟合$4.82 \times {10^{ - 3}}$$3.53 \times {10^{ - 3}}$
Tab.2 Mean and standard deviation of normal distribution
Fig.16 Schematic diagram of sensor compensation system
Fig.17 Monitoring results of temperature and humidity variations in measurement line
Fig.18 Indoor experimental platform
$d_{\mathrm{r}}$/m$\Delta {d_{{\text{pre}}}}$/mm$\Delta {d_{{\text{cor}}}}$/μm
102.986.54
205.996.83
308.938.53
4011.887.02
5014.8711.62
Tab.3 Range deviations before and after correction
[1]   李萍, 李建双, 赫明钊, 等 基于空气环境参数自动测量系统的全站仪测距精度校准技术[J]. 计量学报, 2019, 40 (6A): 12- 16
LI Ping, LI Jianshuang, HE Mingzhao, et al Ranging accuracy calibration technology of total station based on automatic measurement system of air environment parameters[J]. Acta Metrologica Sinica, 2019, 40 (6A): 12- 16
doi: 10.3969/j.issn.1000-1158.2019.z1.03
[2]   叶孝佑, 甘晓川, 常海涛, 等 提高环境参量法测量空气折射率精度的研究[J]. 计量学报, 2008, 29 (4A): 69- 73
YE Xiaoyou, GAN Xiaochuan, CHANG Haitao, et al The improvement of measuring precision for refractive index of air using the method of Edlén equation calculating with environmental parameters of air[J]. Acta Metrologica Sinica, 2008, 29 (4A): 69- 73
[3]   AZOUIGUI S, BADR T, WALLERAND J P, et al Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd: YAG lasers[J]. Review of Scientific Instruments, 2010, 81 (5): 053112
doi: 10.1063/1.3428729
[4]   张海波, 张健, 韩正阳 野外基线温度测量方法探讨[J]. 工业计量, 2017, 27 (1): 36- 37
ZHANG Haibo, ZHANG Jian, HAN Zhengyang Exploration of methods for measuring baseline temperature in the field[J]. Industrial Metrology, 2017, 27 (1): 36- 37
[5]   POLLINGER F, MEYER T, BEYER J, et al The upgraded PTB 600 m baseline: a high-accuracy reference for the calibration and the development of long distance measurement devices[J]. Measurement Science and Technology, 2012, 23 (9): 094018
doi: 10.1088/0957-0233/23/9/094018
[6]   陈杨, 李建双, 缪东晶, 等 基于传感器阵列的野外基线环境参数自动测量系统研制[J]. 计量学报, 2018, 39 (4): 455- 460
CHEN Yang, LI Jianshuang, MIAO Dongjing, et al Development of outdoor baseline environment parameters measurement system based on sensor array[J]. Acta Metrologica Sinica, 2018, 39 (4): 455- 460
doi: 10.3969/j.issn.1000-1158.2018.04.02
[7]   刘学德, 缪东晶, 张京燕, 等 1.2 km标准基线环境参数自动测量系统研制[J]. 计量学报, 2020, 41 (8): 897- 902
LIU Xuede, MIAO Dongjing, ZHANG Jingyan, et al Development of environmental parameters automatic measurement system for 1.2 km standard baseline[J]. Acta Metrologica Sinica, 2020, 41 (8): 897- 902
doi: 10.3969/j.issn.1000-1158.2020.08.01
[8]   谷友艺, 蒋理兴, 王力, 等 野外基线测温方法的比较研究[J]. 测绘与空间地理信息, 2019, 42 (12): 27- 30
GU Youyi, JIANG Lixing, WANG Li, et al Comparative study on thermometry methods of outdoor baseline[J]. Geomatics and Spatial Information Technology, 2019, 42 (12): 27- 30
[9]   LIU G, ZHONG K, LI H, et al A state of art review on time series forecasting with machine learning for environmental parameters in agricultural greenhouses[J]. Information Processing in Agriculture, 2024, 11 (2): 143- 162
doi: 10.1016/j.inpa.2022.10.005
[10]   TORRES J F, HADJOUT D, SEBAA A, et al Deep learning for time series forecasting: a survey[J]. Big Data, 2021, 9 (1): 3- 21
doi: 10.1089/big.2020.0159
[11]   FIME A A, ASHIKUZZAMAN M, AZIZ A Audio signal based danger detection using signal processing and deep learning[J]. Expert Systems with Applications, 2024, 237: 121646
doi: 10.1016/j.eswa.2023.121646
[12]   YANG R, SINGH S K, TAVAKKOLI M, et al CNN-LSTM deep learning architecture for computer vision-based modal frequency detection[J]. Mechanical Systems and signal processing, 2020, 144: 106885
doi: 10.1016/j.ymssp.2020.106885
[13]   ZHOU Y, LI J, CHI J, et al Set-CNN: a text convolutional neural network based on semantic extension for short text classification[J]. Knowledge-Based Systems, 2022, 257: 109948
doi: 10.1016/j.knosys.2022.109948
[14]   BHATT D, PATEL C, TALSANIA H, et al CNN variants for computer vision: history, architecture, application, challenges and future scope[J]. Electronics, 2021, 10 (20): 2470
doi: 10.3390/electronics10202470
[15]   金列俊, 詹建明, 陈俊华, 等 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (3): 467- 474
JIN Liejun, ZHAN Jianming, CHEN Junhua, et al Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 467- 474
[16]   金海龙, 马吴旭, 孟宗, 等 基于改进1DCNN-GRU的滚动轴承故障诊断[J]. 计量学报, 2023, 44 (9): 1423- 1428
JIN Hailong, MA Wuxu, MENG Zong, et al An improved 1DCNN-GRU for rolling bearing fault diagnosis[J]. Acta Metrologica Sinica, 2023, 44 (9): 1423- 1428
doi: 10.3969/j.issn.1000-1158.2023.09.16
[17]   SHE J, TAN Y Research on Runge phenomenon[J]. Advances in Applied Mathematics, 2019, 8 (8): 1500- 1510
doi: 10.12677/AAM.2019.88175
[18]   MAZARGUIL A, OUDRE L, VAYATIS N Non-smooth interpolation of graph signals[J]. Signal Processing, 2022, 196: 108480
doi: 10.1016/j.sigpro.2022.108480
[19]   YU Z, SONG D, SONG Y, et al Research on a visual thermal landscape model of underground space based on the spatial interpolation method: a case study in Shanghai[J]. Energy Reports, 2022, 8: 406- 418
[20]   CHEN J, CAI Z Cardinal MK-spline signal processing: spatial interpolation and frequency domain filtering[J]. Information Sciences, 2019, 495: 116- 135
doi: 10.1016/j.ins.2019.04.056
[21]   郭晓旭, 徐兆斌, 成恒飞, 等 用于星间通信的高灵敏度快捕算法[J]. 哈尔滨工业大学学报, 2023, 55 (8): 43- 50
GUO Xiaoxu, XU Zhaobin, CHENG Hengfei, et al High sensitivity fast acquisition algorithm for inter-satellite communication[J]. Journal of Harbin Institute of Technology, 2023, 55 (8): 43- 50
doi: 10.11918/202208112
[1] Bilan HU,Yangyang WANG,Yongqiang ZHANG. Time series prediction of horizontal displacement in foundation pits based on Stacking multi-model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 706-716.
[2] Yong-qiang GE,Chen CAO,Jia-wang CHEN,Chun-ying XU,Peng ZHOU,Feng GAO,Tao LIANG,Yu-ping FANG. In-situ monitoring device for seabed terrain deformation based on MEMS sensor array[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1732-1739.
[3] Gong CHEN,Chun-hua ZHENG,Xian-ming WENG,Baustani HAMEED,Hong-hao HU,Xiao-yu MA,Jing-qing LIU. Diagnosis of road drainage inlets’ abnormal condition using multi-hydrological data association analysis[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 55-61.
[4] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1247-1252.
[5] WEI Yuan, FENG Tian heng, HUANG Ping jie, HOU Di bo, ZHANG Guang xin. Contamination event detection method based on dynamic correlation analysis of multiple water quality parameters[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1402-1409.
[6] SUN Zhi-lin, LU Ya-qian, HUANG Sai-hua. Prediction of port throughput based on Markov chain-time
series analysis
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1289-1294.
[7] TIAN Chen, WANG Qin-hui, CHENG Le-ming, LUO Zhong-yang, NI Ming-jiang. Experimental investigation on local particle volume fractions
distribution in offset-exit circulating fluidized bed
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 577-583.
[8] LIU Zhen-tao, ZHANG Peng-wei, YU Xiao-li, LI Jian-feng, CHEN Zhan-shan. Fatigue crack diagnosis of engine-block by time series analysis[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 489-493.
[9] WANG Zhi-lei,SUN Hong-yue,LIU Yong-li,SHANG Yue-quan. Time series analysis about groundwater level in slope and rainfall[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1301-1307.