Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 706-716    DOI: 10.3785/j.issn.1008-973X.2025.04.006
    
Time series prediction of horizontal displacement in foundation pits based on Stacking multi-model
Bilan HU1,2(),Yangyang WANG1,Yongqiang ZHANG1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. SPIC Yunnan International Power Investment Limited Company, Kunming 650228, China
Download: HTML     PDF(2018KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to accurately predict the lateral deformation of a foundation pit, a multivariable stacking prediction model based on extreme gradient boosting (XGBoost), long short-term memory (LSTM) and linear regression (LR) was proposed. By using the XGBoost’s advantage of ensemble learning and the accuracy of the two-layer LSTM algorithm in the traditional foundation pit deformation prediction, the prediction accuracy and the generalization ability of the model were improved. In the data pre-processing stage, the K-nearest neighbors (KNN) interpolation algorithm was introduced to increase the total amount of data that can be effectively utilized, and the processing method of time information in the deep learning model Informer was used to deal with the problem of ignoring the different time intervals of time series data by supervised learning in the traditional algorithm. Taking a foundation pit under construction in Hangzhou as a practical engineering case, 616 missing data were interpolated, the time information was converted into three columns of time point feature information, and the proposed model was used for foundation pit deformation analysis. Existing measured data verified that the training accuracy and the generalization ability of the proposed model were greatly improved compared with both the two-layer LSTM model and the XGBoost model when predicting the maximum slope displacement of the foundation pit and the depth of the displacement point. The XGBoost model, which used time-point features, was more suitable for predicting time-sensitive indicators than the LSTM model.



Key wordstime series analysis      foundation pits lateral deformation      two-layer LSTM      extreme gradient boosting (XGBoost)      Stacking algorithm     
Received: 06 February 2024      Published: 25 April 2025
CLC:  TU 433  
Corresponding Authors: Yongqiang ZHANG     E-mail: hubilan@zju.edu.cn;cyqzhang@zju.edu.cn
Cite this article:

Bilan HU,Yangyang WANG,Yongqiang ZHANG. Time series prediction of horizontal displacement in foundation pits based on Stacking multi-model. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 706-716.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.006     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/706


基于多模型Stacking融合的基坑测斜时序预测

为了准确预测基坑倾斜变形,提出基于极致梯度提升(XGBoost)、长短期记忆(LSTM)和线性回归(LR)的堆叠多变量预测模型. 利用XGBoost集成学习的优越性和双层LSTM算法预测传统基坑变形的准确度,提升模型的预测精度和泛化能力. 在数据预处理阶段,引入K最近邻(KNN)插补算法增加可有效利用的数据总量,使用深度学习模型Informer的时间信息处理方式,改善传统算法中有监督学习忽略时间序列数据不同时间间隔的问题. 以杭州某在建基坑为工程案例,插补616条缺失数据,将时间信息转为3列时间点特征信息,使用所提模型进行基坑变形预测分析. 已有实测数据验证表明,所提模型在预测基坑最大测斜位移及该位移点处深度时的训练精度和泛化能力相比双层LSTM模型及XGBoost模型均有较大提升,使用时间点特征的XGBoost模型比LSTM模型更适合预测对时间因素敏感的指标.


关键词: 时间序列分析,  基坑测斜,  双层LSTM,  极致梯度提升(XGBoost),  堆叠算法 
Fig.1 Flow chart of Stacking algorithm
Fig.2 Structure diagram of extreme gradient boosting algorithm
Fig.3 Structure diagram of long short-term memory algorithm
Fig.4 Back propagation network model for time series prediction of foundation pit deformation
Fig.5 Data processing when time column as index
Fig.6 Flow chart for time data preprocessing
Fig.7 Foundation pit layout plan and location of monitoring holes
类别参数类型取值范围
预测变量基坑最大测斜位移点处的深度$H_{u,{\mathrm{max}}} $连续具体量测、预测值
预测变量基坑最大测斜位移$u_{\mathrm{max}} $连续具体量测、预测值
预测变量基坑最大测斜变化点处的深度$H_{v,{\mathrm{max}}} $连续具体量测、预测值
预测变量基坑最大测斜变化率$v_{\mathrm{max}} $连续具体量测、预测值
特征变量测斜孔号分类0~19等20个测斜孔
特征变量坑外水位连续具体量测值
特征变量支撑轴力连续具体量测值
特征变量主动土压力连续具体计算值
特征变量被动土压力连续具体计算值
特征变量时间(月份)连续[?0.5,0.5]
特征变量时间(星期)连续[?0.5,0.5]
特征变量时间(年)连续[?0.5,0.5]
Tab.1 Model performance validation parameters
Fig.8 Maximal depth and test error of tree
Fig.9 Long short-term memory network structure for foundation pit displacement prediction
Fig.10 Multivariable error comparison of different algorithms
Fig.11 Mean absolute percentage errors of four predictor variables for different algorithms
Fig.12 Multivariable prediction results of different algorithms
Fig.13 Comparison of point-by-point relative root-mean-square errors of different algorithms
[1]   钱七虎 迎接我国城市地下空间开发高潮[J]. 岩土工程学报, 1998, 20 (1): 112- 113
QIAN Qihu Meet the upsurge of urban underground space development in China[J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (1): 112- 113
[2]   钱七虎 中国城市地下空间开发利用的现状评价和前景展望[J]. 民防苑, 2006, (Suppl.1): 1- 5
QIAN Qihu Current situation evaluation and prospect of urban underground space development and utilization in China[J]. Civil Defence Realm, 2006, (Suppl.1): 1- 5
[3]   油新华, 何光尧, 王强勋, 等 我国城市地下空间利用现状及发展趋势[J]. 隧道建设(中英文), 2019, 39 (2): 173- 188
YOU Xinhua, HE Guangyao, WANG Qiangxun, et al Current status and development trend of urban underground space in China[J]. Tunnel Construction, 2019, 39 (2): 173- 188
[4]   余苑航, 阎波 我国超大城市地下空间开发现状及其发展趋势[J]. 地下空间与工程学报, 2021, 17 (Suppl.1): 1- 7
YU Yuanhang, BO Yan Present situation and development trend of underground space in megacity in China[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (Suppl.1): 1- 7
[5]   李尚明, 洪成雨, 姬凤玲, 等 深基坑的机器视觉监测与变形预测研究[J]. 地下空间与工程学报, 2023, 19 (3): 992- 1000
LI Shangming, HONG Chengyu, JI Fengling, et al Study on machine vision monitoring and deformation prediction of deep foundation pit[J]. Chinese Journal of Underground Space and Engineering, 2023, 19 (3): 992- 1000
[6]   曹净, 丁文云, 赵党书, 等 基于LSSVM-ARMA模型的基坑变形时间序列预测[J]. 岩土力学, 2014, 35 (Suppl.2): 579- 586
CAO Jing, DING Wenyun, ZHAO Dangshu, et al Time series forecast of foundation pit deformation based on LSSVM-ARMA model[J]. Rock and Soil Mechanics, 2014, 35 (Suppl.2): 579- 586
[7]   程龙飞, 袁宝远 基于前馈神经网络的基坑测斜位移校正与变形预测研究[J]. 岩石力学与工程学报, 2004, 23 (12): 2038- 2041
CHENG Longfei, YUAN Baoyuan Displacement correction and deformation forecast of foundation pit with feedforward neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (12): 2038- 2041
doi: 10.3321/j.issn:1000-6915.2004.12.016
[8]   王雨, 刘国彬, 屠传豹 基于遗传-GRN在深基坑地连墙测斜预测中的研究[J]. 岩土工程学报, 2012, 34 (Suppl.1): 167- 171
WANG Yu, LIU Guobin, TU Chuanbao Deformation prediction for deep excavations based on genetic algorithms-GRNN[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Suppl.1): 167- 171
[9]   洪宇超, 钱建固, 叶源新, 等 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43 (Suppl.2): 108- 111
HONG Yuchao, QIAN Jiangu, YE Yuanxin, et al Application of CNN-LSTM model based on spatiotemporal correlation characteristics in deformation prediction of excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (Suppl.2): 108- 111
[10]   陈艳茹 基于遗传算法和极限学习机的智能算法在基坑变形预测中的应用[J]. 隧道建设(中英文), 2018, 38 (6): 941- 947
CHEN Yanru Application of intelligent algorithm based on genetic algorithm and extreme learning machine to deformation prediction of foundation pit[J]. Tunnel Construction, 2018, 38 (6): 941- 947
[11]   李彦杰, 薛亚东, 岳磊, 等 基于遗传算法-BP神经网络的深基坑变形预测[J]. 地下空间与工程学报, 2015, 11 (Suppl.2): 741- 749
LI Yanjie, XUE Yadong, YUE Lei, et al Displacement prediction of deep foundation pit based on genetic algorithms and BP neural network[J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (Suppl.2): 741- 749
[12]   刘锦, 李峰辉, 刘秀秀 优化GA-BP神经网络模型及基坑变形预测[J]. 隧道建设(中英文), 2021, 41 (10): 1733- 1739
LIU Jin, LI Fenghui, LIU Xiuxiu Optimized genetic algorithm-back propagation neural network model and its application in foundation pit deformation prediction[J]. Tunnel Construction, 2021, 41 (10): 1733- 1739
[13]   徐长节, 李欣雨 基于人工神经网络的深基坑支护结构侧移预测[J]. 上海交通大学学报, 2024, 58 (11): 1735- 1744
XU Changjie, LI Xinyu Lateral deformation prediction of deep foundation retaining structures based on artificial neural network[J]. Journal of Shanghai Jiao Tong University, 2024, 58 (11): 1735- 1744
[14]   LI X, PAN Y, ZHANG L, et al Dynamic and explainable deep learning-based risk prediction on adjacent building induced by deep excavation[J]. Tunnelling and Underground Space Technology, 2023, 140: 105243
doi: 10.1016/j.tust.2023.105243
[15]   DING Q, GUO C, FAN X, et al Multi-source monitoring data helps revealing and quantifying the excavation-induced deterioration of rock mass[J]. Engineering Geology, 2023, 325: 107281
doi: 10.1016/j.enggeo.2023.107281
[16]   秦胜伍, 张延庆, 张领帅, 等 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报: 地球科学版, 2021, 51 (5): 1316- 1323
QIN Shengwu, ZHANG Yanqing, ZHANG Lingshuai, et al Prediction of ground settlement around deep foundation pit based on Stacking model fusion[J]. Journal of Jilin University: Earth Science Edition, 2021, 51 (5): 1316- 1323
[17]   XU C, CAO B T, YUAN Y, et al A multi-fidelity deep operator network (DeepONet) for fusing simulation and monitoring data: application to real-time settlement prediction during tunnel construction[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108156
doi: 10.1016/j.engappai.2024.108156
[18]   袁金荣, 赵福勇 基坑变形预测的时间序列分析[J]. 土木工程学报, 2001, 34 (6): 55- 59
YUAN Jinrong, ZHAO Fuyong Predicting deformation of foundation pit using ANN[J]. China Civil Engineering Journal, 2001, 34 (6): 55- 59
doi: 10.3321/j.issn:1000-131X.2001.06.011
[19]   ZHOU H , ZHANG S , PENG J , et al. Informer: beyond efficient transformer for long sequence time-Series forecasting [C]// Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence . [S.l.]: AAAI, 2021: 11106–11115.
[20]   陈振宇, 刘金波, 李晨, 等 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44 (2): 614- 620
CHEN Zhenyu, LIU Jinbo, LI Chen, et al Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44 (2): 614- 620
[21]   COVER T, HART P. Nearest neighbor pattern classification [J], IEEE Transactions Information Theory , 1967, 13(1): 21–27.
[22]   CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . San Francisco: ACM, 2016: 785–794.
[23]   史佳琪, 张建华 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39 (14): 4030- 4041
SHI Jiaqi, ZHANG Jianhua Load forecasting based on multi-model by stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39 (14): 4030- 4041
[24]   LI L, SITU R, GAO J, et al. A hybrid model combining convolutional neural network with XGBoost for predicting social media popularity [C]// Proceedings of the 25th ACM International Conference on Multimedia . [S.l.]: ACM, 2017: 1912–1917.
[25]   李国杰 有关人工智能的若干认识问题[J]. 中国计算机学会通讯, 2021, 17 (7): 44- 51
LI Guojie Some cognitive problems about artificial intelligence[J]. Communications of the CCF, 2021, 17 (7): 44- 51
[26]   李国杰, 程学旗 大数据研究: 未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27 (6): 647- 657
LI Guojie, CHENG Xueqi Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Sciences, 2012, 27 (6): 647- 657
[27]   孙钧, 温海洋 人工智能科学在软土地下工程施工变形预测与控制中的应用实践——理论基础、方法实施、精细化智能管理(示例)[J]. 隧道建设(中英文), 2020, 40 (1): 1- 8
SUN Jun, WEN Haiyang Application of artificial intelligence science to construction deformation prediction and control of underground engineering in soft soil: cases study on theoretical foundation, method application and fine intelligent technical management[J]. Tunnel Construction, 2020, 40 (1): 1- 8
[28]   PAN L X, ZHANG Y R, CAO M S, et al. Parameter sensitivity analysis of geotechnical engineering system using neural network ensemble [C]// Proceedings of the 2015 International Conference on Artificial Intelligence and Industrial Engineering . Phuket: Atlantis Press, 2015: 196–199.
[29]   钟国强, 王浩, 张国华, 等 基于RS-MIV-ELM模型的基坑水平位移影响因素分析和预测[J]. 上海交通大学学报, 2018, 52 (11): 1508- 1515
ZHONG Guoqiang, WANG Hao, ZHANG Guohua, et al Analysis and prediction of factors affecting horizontal displacement of foundation pit based on RS-MIV-ELM model[J]. Journal of Shanghai Jiao Tong University, 2018, 52 (11): 1508- 1515
[30]   林宣, 徐海涛, 高旭, 等 软土地区深基坑承压水降水对地表沉降影响分析[J]. 铁道建筑技术, 2022, (4): 156- 160
LIN Xuan, XU Haitao, GAO Xu, et al Influence of confined water dewatering on surface settlement of deep foundation pit in soft soil area[J]. Railway Construction Technology, 2022, (4): 156- 160
[31]   浙江省建筑设计研究院, 浙江大学. 建筑基坑工程技术规程: DB33/T 1096-2014 [S]. 杭州: 浙江工商大学出版社, 2014.
[32]   JAIN A. XGBoost parameters tuning: a complete guide with python codes [EB/OL]. [2024−01−21]. https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/.
[1] Xi-ze CHEN,Jun-feng JIA,Yu-lei BAI,Tong GUO,Xiu-li DU. Prediction model of axial bearing capacity of concrete-filled steel tube columns based on XGBoost-SHAP[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1061-1070.
[2] Gong CHEN,Chun-hua ZHENG,Xian-ming WENG,Baustani HAMEED,Hong-hao HU,Xiao-yu MA,Jing-qing LIU. Diagnosis of road drainage inlets’ abnormal condition using multi-hydrological data association analysis[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 55-61.
[3] Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.
[4] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[5] WEI Yuan, FENG Tian heng, HUANG Ping jie, HOU Di bo, ZHANG Guang xin. Contamination event detection method based on dynamic correlation analysis of multiple water quality parameters[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1402-1409.
[6] SUN Zhi-lin, LU Ya-qian, HUANG Sai-hua. Prediction of port throughput based on Markov chain-time
series analysis
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1289-1294.
[7] TIAN Chen, WANG Qin-hui, CHENG Le-ming, LUO Zhong-yang, NI Ming-jiang. Experimental investigation on local particle volume fractions
distribution in offset-exit circulating fluidized bed
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 577-583.
[8] LIU Zhen-tao, ZHANG Peng-wei, YU Xiao-li, LI Jian-feng, CHEN Zhan-shan. Fatigue crack diagnosis of engine-block by time series analysis[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 489-493.
[9] WANG Zhi-lei,SUN Hong-yue,LIU Yong-li,SHANG Yue-quan. Time series analysis about groundwater level in slope and rainfall[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1301-1307.