Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1148-1158    DOI: 10.3785/j.issn.1008-973X.2025.06.006
    
Multi-distortion type underwater image enhancement based on improved CycleGAN
Zhenming LV1(),Shaojiang DONG1,*(),Zongyou XIA2,Xiaoyan MOU3,Mingquan WANG4
1. School of Mechantronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
3. School of Mechanical Engineering, Chongqing Vocational and Technical College of Industry, Chongqing 402260, China
4. Chongqing Survey Institute, Chongqing 400020, China
Download: HTML     PDF(4587KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-distortion type underwater image enhancement algorithm based on improved CycleGAN was proposed, aiming at the difficulties of underwater image blurring, low contrast and image distortion recognition caused by various factors such as scattering, absorption and color deviation. Firstly, in order to improve the image enhancement effect, Auto-Encoder+Skip-connection network structure was used in the generator of CycleGAN, and global color correction structure was added for global enhancement in terms of pixel as well as color, so as to better capture the color information in underwater images. Secondly, a multidimensional perceptual discriminator was designed to learn the global and local features of the image. This discriminator payed more attention to the local details of the image, effectively targeted scattering and color noise, perceived the image from a multidimensional space, and had a stronger ability to extract the features, thereby enhancing the accuracy of image discrimination. Finally, the experimental results on EUVP, UIEB and U45 datasets showed that the proposed method achieved better results, compared with other algorithms. In processing multi-distortion types of underwater images, the algorithm’s SSIM indicator was higher than that of the second place by an average of 1.57%, the PSNR indicator was higher by 1.836%, the UIQM indicator was higher by 1.324%, and the UCIQE indicator was higher by 1.086%. The proposed method performed well in processing color and noise details.



Key wordsimage enhancement      CycleGAN      global color correction structure      multidimensional perceptual discriminator      multiple distortion     
Received: 08 April 2024      Published: 30 May 2025
CLC:  TP 391.41  
Fund:  重庆市教委科学技术研究资助项目(KJQN202203207);重庆市科技创新领军人才支持计划资助项目(CSTCCCXLJRC201920);重庆市高校创新研究群体(CXQT20019).
Corresponding Authors: Shaojiang DONG     E-mail: 13946501711@163.com;dongshaojiang100@163.com
Cite this article:

Zhenming LV,Shaojiang DONG,Zongyou XIA,Xiaoyan MOU,Mingquan WANG. Multi-distortion type underwater image enhancement based on improved CycleGAN. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1148-1158.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.006     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1148


基于改进CycleGAN的多失真类型水下图像增强

针对由散射、吸收和色偏等多种因素导致的水下图像模糊、对比度低、图像失真辨识困难的问题,提出基于改进CycleGAN的多失真类型水下图像增强算法. 为了提高图像增强效果,在CycleGAN的生成器中采用Auto-Encoder+Skip-connection的网络结构,添加全局色彩校正结构,从像素方面以及颜色方面进行全局增强,从而更好地捕捉水下图像中的色彩信息. 设计多维感知判别器来学习图像的全局特征和局部特征,此设计更加注重图像局部细节部分,有效针对散斑和色彩噪声,从多维空间上感知图像,提取特征能力更强,从而能提高图像判别的精度. 在EUVP、UIEB和U45数据集上的实验结果表明,所提出的方法取得了较好的结果,相较其他算法,在处理多种水下失真类型的图像方面,该算法的SSIM指标平均比第2名高出1.57%、PSNR指标高出1.836%、UIQM指标高出1.324%、UCIQE指标高出1.086%,在处理颜色和噪声细节方面表现出色.


关键词: 图像增强,  CycleGAN,  全局色彩校正结构,  多维感知判别器,  多种失真 
Fig.1 Overall network architecture for multi-distortion type underwater image
Fig.2 Underwater image enhancement network generator model structure
Fig.3 Squeeze-and-attention module
Fig.4 Self-attention module in generator neck
Fig.5 Discriminator model structure of underwater image enhancement network
Fig.6 Visual comparison of yellow, fogged and green underwater image enhancement methods (local difference amplification representation)
Fig.7 Visual comparison of blue and color underwater image enhancement methods (local difference amplification representation)
Fig.8 Visual comparison of various underwater image enhancement methods on U45 dataset (local difference amplification representation)
算法PSNRSSIMUIQMUCIQE
CLAHE19.62140.75572.89640.3396
UDCP18.36160.77582.77840.3782
Retinex12.63850.68692.46480.3629
IBLA20.80860.80533.29230.4408
CycleGAN17.93020.74313.48950.4025
FUnIE-GAN19.41920.81633.24580.4496
LANet18.63440.82553.29920.4507
SCEIR22.93610.84823.49460.4673
MGCycleGAN23.19570.86233.59610.4728
Tab.1 Quantitative evaluation results of several algorithms for yellow distorted images on EUVP and UIEB
算法PSNRSSIMUIQMUCIQE
CLAHE18.18370.74872.77320.3827
UDCP17.06650.77162.69270.3756
Retinex20.46680.80932.67930.3958
IBLA16.71030.72723.47140.4026
CycleGAN19.51130.74313.35230.4388
FUnIE-GAN16.58190.66023.25760.4182
LANet22.01190.85493.55310.4494
SCEIR23.22340.85293.58020.4473
MGCycleGAN24.16700.87633.63010.4562
Tab.2 Quantitative evaluation results of several algorithms for foggy distorted images on EUVP and UIEB
算法PSNRSSIMUIQMUCIQE
CLAHE14.82430.68682.95430.3337
UDCP14.77490.69272.88360.3779
Retinex16.73800.75653.14480.3863
IBLA19.54720.79503.29230.4309
CycleGAN21.40920.81993.35960.4313
FUnIE-GAN22.54180.80223.31460.4647
LANet24.69790.84273.77550.4809
SCEIR23.16370.83993.49210.4679
MGCycleGAN24.63340.84813.72080.4746
Tab.3 Quantitative evaluation results of blue distorted images on EUVP and UIEB using several algorithms
算法PSNRSSIMUIQMUCIQE
CLAHE14.77150.65052.67810.3885
UDCP16.00210.70732.81020.3936
Retinex13.69090.60892.54340.3232
IBLA20.68960.81203.28440.4105
CycleGAN19.80910.77453.32730.4468
FUnIE-GAN17.27220.79163.30720.4263
LANet24.55780.82523.53050.4524
SCEIR24.74370.83403.44960.4639
MGCycleGAN25.00560.83973.59310.4676
Tab.4 Quantitative evaluation results of color distorted images on EUVP and UIEB using several algorithms
算法PSNRSSIMUIQMUCIQE
CLAHE13.62560.72012.86580.3456
UDCP18.87710.79243.04880.3817
Retinex12.74040.67432.51650.3249
IBLA20.07390.80973.39610.4194
CycleGAN22.27570.81363.34330.4291
FUnIE-GAN22.19530.82203.36510.4226
LANet23.53960.84043.58890.4446
SCEIR24.16190.84283.53580.4568
MGCycleGAN24.66530.85943.61930.4774
Tab.5 Quantitative evaluation results of green distorted images on EUVP and UIEB using several algorithms
算法PSNRSSIMUIQMUCIQE
CLAHE16.86930.68772.69460.3805
UDCP14.47940.72312.96530.3694
Retinex13.24490.64442.89030.3594
IBLA18.19020.77782.84920.4025
CycleGAN21.10150.80833.21030.4188
FUnIE-GAN20.53270.78183.29460.4245
LANet22.61460.81933.36350.4454
SCEIR23.56010.82313.37030.4429
MGCycleGAN23.73360.82493.41670.4586
Tab.6 Quantitative evaluation results of several algorithms in U45
Fig.9 Visual comparison of ablation experiments (local difference amplification representation)
消融实验PSNRSSIMUIQMUCIQE
w/o color correction block22.36970.81533.16220.4463
w/o MP discriminator22.83900.80973.20180.4467
MGCycleGAN23.19570.83233.59660.4528
Tab.7 Quantitative assessment of ablation experiments
消融实验PSNRSSIMUIQMUCIQE
w/o ${L_{\rm{GAN}}}$18.83230.73432.84360.3734
w/o SSIM Loss21.68620.78582.98320.4445
MGCycleGAN23.19570.83233.59660.4528
Tab.8 Quantitative evaluation of loss function ablation experiment
[1]   WHITCOMB L, YOERGER D R, SINGH H, et al. Advances in underwater robot vehicles for deep ocean exploration: navigation, control, and survey operations [C]// Robotics Research: the 9th International Symposium. London: Springer, 2000: 439−448.
[2]   LI X, HOU G, TAN L, et al A hybrid framework for underwater image enhancement[J]. IEEE Access, 2020, 8: 197448- 197462
doi: 10.1109/ACCESS.2020.3034275
[3]   FU X, ZHUANG P, HUANG Y, et al. A retinex-based enhancing approach for single underwater image [C]// IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572–4576.
[4]   PAN P, YUAN F, CHENG E Underwater image de-scattering and enhancing using dehazenet and HWD[J]. Journal of Marine Science and Technology, 2018, 26 (4): 6
[5]   SHEN L, REDA M, ZHANG X, et al Polarization-driven solution for mitigating scattering and uneven illumination in underwater imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4202615
[6]   MENG H, YAN Y, CAI C, et al A hybrid algorithm for underwater image restoration based on color correction and image sharpening[J]. Multimedia Systems, 2022, 28 (6): 1975- 1985
doi: 10.1007/s00530-020-00693-2
[7]   PEREZ J, ATTANASIO A C, NECHYPORENKO N, et al. A deep learning approach for underwater image enhancement [C]// Biomedical Applications Based on Natural and Artificial Computing. Cham: Springer International Publishing, 2017: 183–192.
[8]   WEI D, XIE H, ZHANG Z, et al Learning a Holistic-Specific color transformer with Couple Contrastive constraints for underwater image enhancement and beyond[J]. Journal of Visual Communication and Image Representation, 2024, 98: 104059
doi: 10.1016/j.jvcir.2024.104059
[9]   ZHANG T, LIU Y MTUW-GAN: a multi-teacher knowledge distillation generative adversarial network for underwater image enhancement[J]. Applied Sciences, 2024, 14 (2): 529
doi: 10.3390/app14020529
[10]   ANWAR S, LI C, PORIKLI F, et al. Deep underwater image enhancement [EB/OL]. [2024-03-02]. https://arxiv.org/abs/1807.03528v1.
[11]   LIANG D, CHU J, CUI Y, et al NPT-UL: an underwater image enhancement framework based on nonphysical transformation and unsupervised learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5608819
[12]   LIU Q, ZHANG Q, LIU W, et al WSDS-GAN: a weak-strong dual supervised learning method for underwater image enhancement[J]. Pattern Recognition, 2023, 143: 109774
doi: 10.1016/j.patcog.2023.109774
[13]   PARK J, HAN D K, KO H Adaptive weighted multi-discriminator CycleGAN for underwater image enhancement[J]. Journal of Marine Science and Engineering, 2019, 7 (7): 200
doi: 10.3390/jmse7070200
[14]   WANG H, ZHANG W, BAI L, et al Metalantis: a comprehensive underwater image enhancement framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618319
[15]   ZHU X, LIN M, ZHAO M, et al Adaptive underwater image enhancement based on color compensation and fusion[J]. Signal, Image and Video Processing, 2023, 17 (5): 2201- 2210
doi: 10.1007/s11760-022-02435-5
[16]   HUANG Y, YUAN F, XIAO F, et al Underwater image enhancement based on zero-reference deep network[J]. IEEE Journal of Oceanic Engineering, 2023, 48 (3): 903- 924
doi: 10.1109/JOE.2023.3245686
[17]   PARK C W, EOM I K Underwater image enhancement using adaptive standardization and normalization networks[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107445
doi: 10.1016/j.engappai.2023.107445
[18]   GUAN F, LU S, LAI H, et al AUIE-GAN: adaptive underwater image enhancement based on generative adversarial networks[J]. Journal of Marine Science and Engineering, 2023, 11 (7): 1476
doi: 10.3390/jmse11071476
[19]   梁秀满, 赵治刚, 于海峰, 等 基于颜色线模型和多尺度融合的水下图像增强[J]. 控制与决策, 2025, 40 (1): 162- 169
LIANG Xiuman, ZHAO Zhigang, YU Haifeng, et al Underwater image enhancement based on color-line model and multi-scale fusion[J]. Control and Decision, 2025, 40 (1): 162- 169
[20]   温佩芝, 陈君谋, 肖雁南, 等 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报: 工学版, 2022, 56 (2): 213- 224
WEN Peizhi, CHEN Junmou, XIAO Yannan, et al Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 213- 224
[21]   ZHONG Z, LIN Z Q, BIDART R, et al. Squeeze-and-attention networks for semantic segmentation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13065–13074.
[22]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 6000 – 6010.
[23]   JIANG Y, GONG X, LIU D, et al EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340- 2349
doi: 10.1109/TIP.2021.3051462
[24]   HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
[25]   ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242–2251.
[26]   LI C, GUO J, GUO C Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Processing Letters, 2018, 25 (3): 323- 327
doi: 10.1109/LSP.2018.2792050
[27]   ISLAM M J, XIA Y, SATTAR J Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 3227- 3234
doi: 10.1109/LRA.2020.2974710
[28]   LI C, GUO C, REN W, et al An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376- 4389
[29]   LI H, LI J, WANG W. A fusion adversarial underwater image enhancement network with a public test dataset [EB/OL]. [2024–03–02]. https://arxiv.org/abs/1906.06819v2.
[30]   ZUIDERVELD K. Contrast limited adaptive histogram equalization [M]// Graphics gems. Amsterdam: Elsevier, 1994: 474–485.
[31]   DREWS P JR, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images [C]// IEEE International Conference on Computer Vision Workshops. Sydney: IEEE, 2013: 825–830.
[32]   FU X, ZHUANG P, HUANG Y, et al. A retinex-based enhancing approach for single underwater image [C]// IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572–4576.
[33]   PENG Y T, COSMAN P C Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26 (4): 1579- 1594
doi: 10.1109/TIP.2017.2663846
[34]   LIU S, FAN H, LIN S, et al Adaptive learning attention network for underwater image enhancement[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 5326- 5333
doi: 10.1109/LRA.2022.3156176
[1] Canlin LI,Wenjiao ZHANG,Zhiwen SHAO,Lizhuang MA,Xinyue WANG. Semantic segmentation method on nighttime road scene based on Trans-nightSeg[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 294-303.
[2] Jian-zhao ZHANG,Ji-chang GUO,Yu-dong WANG. Underwater image enhancement algorithm via fusing reverse medium transmission map[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 921-929.
[3] Jia-wen LIAO,Yan-wei PANG,Jing NIE,Han-qing SUN,Jia-le CAO. Stereo low-light enhancement based on feature fusion and consistency loss[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2456-2466.
[4] Hong-da CHENG,Hai-ming LUO,Qing-chao XIA,Can-jun YANG. Recognition of images for underwater vehicle based on improved γ-CLAHE algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1648-1655.
[5] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[6] Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.
[7] Zi-ye YONG,Ji-chang GUO,Chong-yi LI. weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 555-562.
[8] Wan-liang WANG,Xiao-han YANG,Yan-wei ZHAO,Nan GAO,Chuang LV,Zhao-juan ZHANG. Image enhancement algorithm with convolutional auto-encoder network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1728-1740.
[9] LIU Tao, ZHAO Ju-feng, XU Zhi-hai, FENG Hua-jun,CHEN Hui-fang. Enhancement algorithm for infrared images based on Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1534-1539.
[10] ZHANG Zan-Chao, JIA Shun-Ren. Automatic urinary image processing[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 832-838.