Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 795-803    DOI: 10.3785/j.issn.1008-973X.2025.04.015
    
Semantic compression algorithm based on global correlated semantic importance
Yong LI1,2(),Zhiqiang LIU1,Maoxing TIAN2,*(),Songlin JIA3
1. School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, China
2. Xingtang Communication Technology Limited Company, Beijing 100191, China
3. Aerospace DFH Satellite Limited Company, Beijing 100094, China
Download: HTML     PDF(856KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel semantic compression algorithm was proposed, aiming to address the inadequacies of traditional compression methods in retaining deep semantic information. The global correlated semantic importance (GCSI) was used as a semantic importance measurement parameter, and the semantic task relevance and semantic intrinsic relevance metrics were integrated to assess the importance of semantic features and achieve effective semantic compression. Experimental results show that the compression performance of the proposed algorithm is improved by more than 30% compared with traditional methods under different channel conditions, and the classification accuracy of the proposed algorithm is enhanced by more than 10% in low bandwidth and low signal-to-noise ratio (SNR) environments. Under the same bandwidth and performance requirements, the proposed algorithm exhibits superior noise stability compared to existing semantic compression methods based on semantic task relevance. The proposed algorithm significantly alleviates network transmission pressure, enhances task performance, and can meet the increasing data transmission requirements.



Key wordssemantic communication      image classification      semantic importance      semantic compression      semantic similarity     
Received: 27 February 2024      Published: 25 April 2025
CLC:  TP 301.6  
Corresponding Authors: Maoxing TIAN     E-mail: liy61152024@163.com;tmx7142024@163.com
Cite this article:

Yong LI,Zhiqiang LIU,Maoxing TIAN,Songlin JIA. Semantic compression algorithm based on global correlated semantic importance. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 795-803.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/795


基于全局相关语义重要性的语义压缩算法

为了改善传统压缩方法在保留深层语义信息方面的不足,提出新型语义压缩算法. 将全局相关语义重要性(GCSI)作为语义重要性度量参数,综合考虑语义任务相关性和语义内在相关性指标,全面评估语义特征的重要性,实现有效的语义压缩. 实验结果表明,在不同信道条件下,相比传统方法,所提算法的压缩性能提升超过30%;在低带宽和低信噪比环境中,所提算法的分类准确度提升超过10%. 在相同带宽和性能要求下,相较于现有基于语义任务相关性的语义压缩方法,所提算法的噪声稳定性更好,显著降低了网络传输压力,提升了任务处理性能,有能力面对未来逐步增加的数据传输需求挑战.


关键词: 语义通信,  图片分类,  语义重要性,  语义压缩,  语义相似度 
Fig.1 Semantic importance measurement network
Fig.2 Network architecture of semantic compression algorithm based on global correlated semantic importance
Fig.3 Additive white Gaussian noise channel model
算法$\tau = 0.98 $$\tau = 0.90 $$\tau = 0.80 $$\tau = 0.60 $
AccprF1AccprF1AccprF1AccprF1
本研究0.810.820.810.810.940.940.940.940.950.950.950.950.960.960.960.96
文献[25]、[28]0.700.840.700.700.900.920.900.910.930.930.930.930.940.950.940.94
随机压缩0.540.600.540.480.630.790.630.610.790.860.790.770.910.920.910.91
Tab.1 Performance testing results of different compression algorithms in STL-10 dataset
Fig.4 Classification accuracy of different compression algorithms at various signal-to-noise ratios (STL-10 dataset)
Fig.5 Classification accuracy of different compression algorithms with different channel bandwidths
算法$\tau = 0.98 $$\tau = 0.90$$\tau = 0.80 $$\tau = 0.60 $
AccprF1AccprF1AccprF1AccprF1
本研究0.790.790.790.790.900.900.900.890.910.910.910.910.920.920.920.92
文献[25]、[28]0.680.730.680.680.850.860.850.850.880.890.880.880.910.910.910.91
随机压缩0.170.300.170.110.650.780.650.620.760.800.760.730.860.880.860.85
Tab.2 Performance testing results of different compression algorithms in CIFAR-10 dataset
Fig.6 Classification accuracy of different compression algorithms at various signal-to-noise ratios (CIFAR-10 dataset)
[1]   WEAVER W Recent contributions to the mathematical theory of communication[J]. ETC: A Review of General Semantics, 1953, 10 (4): 261- 281
[2]   SHANNON C E A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27 (3): 379- 423
doi: 10.1002/j.1538-7305.1948.tb01338.x
[3]   张平, 戴金晟, 张育铭, 等 面向语义通信的非线性变换编码[J]. 通信学报, 2023, 44 (4): 1- 14
ZHANG Ping, DAI Jincheng, ZHANG Yuming, et al Nonlinear transform coding for semantic communications[J]. Journal on Communications, 2023, 44 (4): 1- 14
doi: 10.11959/j.issn.1000-436x.2023087
[4]   XIE H, QIN Z, LI G Y, et al Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 2663- 2675
doi: 10.1109/TSP.2021.3071210
[5]   TONG H, YANG Z, WANG S, et al. Federated learning based audio semantic communication over wireless networks [C]// Proceedings of the IEEE Global Communications Conference . Madrid: IEEE, 2021: 1–6.
[6]   HUANG D, TAO X, GAO F, et al. Deep learning-based image semantic coding for semantic communications [C]// Proceedings of the IEEE Global Communications Conference . Madrid: IEEE, 2021: 1–6.
[7]   PATWA N, AHUJA N, SOMAYAZULU S, et al. Semantic-preserving image compression [C]// Proceedings of the IEEE International Conference on Image Processing . Abu Dhabi: IEEE, 2020: 1281–1285.
[8]   SUN Q, GUO C, YANG Y, et al. Deep joint source-channel coding for wireless image transmission with semantic importance [C]// Proceedings of the IEEE 96th Vehicular Technology Conference . London: IEEE, 2022: 1–7.
[9]   WANG J, WANG S, DAI J, et al. Perceptual learned source-channel coding for high-fidelity image semantic transmission [C]// Proceedings of the GLOBECOM 2022-2022 IEEE Global Communications Conference . Rio de Janeiro: IEEE, 2022: 3959–3964.
[10]   WANG Q, SHEN L, SHI Y Recognition-driven compressed image generation using semantic-prior information[J]. IEEE Signal Processing Letters, 2020, 27: 1150- 1154
doi: 10.1109/LSP.2020.3004967
[11]   HU Q, ZHANG G, QIN Z, et al. Robust semantic communications against semantic noise [C]// Proceedings of the IEEE 96th Vehicular Technology Conference . London: IEEE, 2022: 1–6.
[12]   牛冠冲, 刘飞翔, 杨雯, 等 面向多任务的语义通信架构设计与实现[J]. 移动通信, 2024, 48 (2): 47- 55
NIU Guanchong, LIU Feixiang, YANG Wen, et al Design and implementation of semantic communication for goal-oriented multi-tasking[J]. Mobile Communications, 2024, 48 (2): 47- 55
doi: 10.3969/j.issn.1006-1010.20240109-0001
[13]   莫肇豪, 韦宝典, 马啸 基于上下文语义相似度的软压缩方法[J]. 移动通信, 2024, 48 (2): 90- 96
MO Zhaohao, WEI Baodian, MA Xiao Soft compression method based on context-semantic similarity[J]. Mobile Communications, 2024, 48 (2): 90- 96
doi: 10.3969/j.issn.1006-1010.20240111-0002
[14]   KUTAY E, YENER A. Classification-oriented semantic wireless communications [C]// 2024 IEEE International Conference on Acoustics, Speech and Signal Processing . Seoul: IEEE, 2024: 9096–9100.
[15]   GRASSUCCI E, PARK J, BARBAROSSA S, et al. Generative AI meets semantic communication: evolution and revolution of communication tasks [EB/OL]. (2024−01−10)[2024−07−15]. https://arxiv.org/pdf/2401.06803.
[16]   LI N, IOSIFIDIS A, ZHANG Q. Dynamic semantic compression for CNN inference in multi-access edge computing: a graph reinforcement learning-based autoencoder [EB/OL]. (2024−01−19)[2024−07−15]. https://arxiv.org/pdf/2401.12167.
[17]   WANG C, HAN Y, WANG W An end-to-end deep learning image compression framework based on semantic analysis[J]. Applied Sciences, 2019, 9 (17): 3580
doi: 10.3390/app9173580
[18]   SEBAI D. Multi-rate deep semantic image compression with quantized modulated autoencoder [C]// Proceedings of the IEEE 23rd International Workshop on Multimedia Signal Processing . Tampere: IEEE, 2021: 1–6.
[19]   DONG C, LIANG H, XU X, et al Semantic communication system based on semantic slice models propagation[J]. IEEE Journal on Selected Areas in Communications, 2023, 41 (1): 202- 213
doi: 10.1109/JSAC.2022.3221948
[20]   何晨光, 黄声显, 陈舒怡, 等 基于语义通信的低比特率图像语义编码方法[J]. 信号处理, 2023, 39 (3): 410- 418
HE Chenguang, HUANG Shengxian, CHEN Shuyi, et al A low bitrates image semantic coding method based on semantic communication[J]. Journal of Signal Processing, 2023, 39 (3): 410- 418
[21]   LUO S H, YANG Y Z, YIN Y L, et al. DeepSIC: deep semantic image compression [C]// Neural Information Processing . [S. l.]: Springer, 2018: 96–106.
[22]   PARK S, SIMEONE O, KANG J. End-to-end fast training of communication links without a channel model via online meta-learning [C]// Proceedings of the IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications . Atlanta: IEEE, 2020: 1–5.
[23]   JIANG S, LIU Y, ZHANG Y, et al Reliable semantic communication system enabled by knowledge graph[J]. Entropy, 2022, 24 (6): 846
doi: 10.3390/e24060846
[24]   WANG Y, CHEN M, SAAD W, et al. Performance optimization for semantic communications: an attention-based learning approach [C]// Proceedings of the IEEE Global Communications Conference . Madrid: IEEE, 2021: 1–6.
[25]   刘传宏, 郭彩丽, 杨洋, 等 人工智能物联网中面向智能任务的语义通信方法[J]. 通信学报, 2021, 42 (11): 97- 108
LIU Chuanhong, GUO Caili, YANG Yang, et al Intelligent task-oriented semantic communication method in artificial intelligence of things[J]. Journal on Communications, 2021, 42 (11): 97- 108
doi: 10.11959/j.issn.1000-436x.2021214
[26]   ZITNICK C L, VEDANTAM R, PARIKH D Adopting abstract images for semantic scene understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (4): 627- 638
doi: 10.1109/TPAMI.2014.2366143
[27]   KANG B Y. A novel approach to semantic indexing based on concept [C]// Proceedings of the 41st Annual Meeting on Association for Computational Linguistics . Sapporo: ACL, 2003: 44–49.
[1] Yuebo MENG,Bo WANG,Guanghui LIU. Multi-scale context-guided feature elimination for ancient tower image classification[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2489-2499.
[2] Qing-lin AI,Jing-rui CUI,Bing-hai LV,Tong TONG. Surface defect detection method for bearing drum-shaped rollers based on fusion transformation of defective area[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1009-1020.
[3] Jin-bo HU,Wei-zhi NIE,Dan SONG,Zhuo GAO,Yun-peng BAI,Feng ZHAO. Chest X-ray imaging disease diagnosis model assisted by deformable Transformer[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1923-1932.
[4] Guo-hua ZHOU,Jian-wei LU,Tong-guang NI,Xue-long HU. Hierarchical nonlinear subspace dictionary learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1159-1167.
[5] Xue-qin ZHANG,Tian-ren LI. Breast cancer pathological image classification based on Cycle-GAN and improved DPN network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 727-735.
[6] Zhi-chao CHEN,Hai-ning JIAO,Jie YANG,Hua-fu ZENG. Garbage image classification algorithm based on improved MobileNet v2[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1490-1499.
[7] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[8] Qi SHEN,Yan ZHAO,Xiao-wei ZHOU,Xiao-ran YUAN. Image Hashing algorithm based on structure and gradient[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1525-1533.
[9] Tao MING,Dan WANG,Ji-chang GUO,Qiang LI. Breast cancer histopathological image classification using multi-scale channel squeeze-and-excitation model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1289-1297.
[10] Zhuang KANG,Jie YANG,Hao-qi GUO. Automatic garbage classification system based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1272-1280.
[11] Hong-xia WANG,Jia-qi ZHOU,Cheng-hao GU,Hong LIN. Design of activation function in CNN for image classification[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1363-1373.
[12] ZOU Bei-ji, GUO Jian-jing, ZHU Cheng-zhang, YANG Wen-Jun, WU Hui, HE Qi. Image classification based on BOW-HOG feature[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2311-2319.
[13] YANG Bing, XU Duan-qing, YANG Xin, ZHAO Lei, TANG Da-wei. Painting image classification based on aesthetic style similarity rule[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1486-1492.
[14] LI Xiao-run, ZHU Jie-er, WANG Jing, ZHAO Liao-ying. Hyperspectral image classification based on compsite kernels support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1403-1410.
[15] XU Qi, GU Xin-jian. Subject-action-object-triples-based method for extraction of knowledge gene[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 385-399.