Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 717-729    DOI: 10.3785/j.issn.1008-973X.2025.04.007
    
Seismic response of P-wave incident layered elastic foundation site under thermal effect
Yiqi YANG1(),Qiang MA1,2,*()
1. School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China
2. Key Laboratory of Energy-Saving Building Materials and Engineering Safety, Qinghai Province, Xining 810016, China
Download: HTML     PDF(1606KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A model of a layered elastic foundation site under plane P-wave incidence was established based on the propagation theory of elastic waves in the thermoelastic medium. According to the Helmholtz vector decomposition principle, the transfer matrix method was used in the bedrock-layered elastic foundation system to derive the conversion matrix of wave amplitude coefficients in the layered elastic foundation site, and an analytical solution for the seismic response of plane P-wave incident the layered elastic foundation site under the action of thermal effect was obtained. The influence of thermal physical parameters such as heat conduction coefficient, medium temperature, and solid specific heat capacity on seismic ground motion of layered elastic foundation site was analyzed by numerical calculation. Results show that when the incident angle is 0 to 90°, the horizontal displacement magnification factor under thermal effect decreases by 40.53% compared with the isothermal condition, and the vertical displacement magnification factor increases by 8.28% compared with the isothermal condition. The peaks of horizontal and vertical displacement magnification factors of layered elastic foundations increase by 33.17% and 38.12%, respectively, compared to those for homogeneous elastic foundations. With a rise in the medium temperature, the horizontal displacement magnification factor decreases gradually, and the vertical displacement magnification factor increases gradually. The horizontal and vertical displacement magnification factor increases gradually with an increase in the frequency. The order of soft and hard soil layers in the soil layer, the solid specific heat capacity, and the coefficient of thermal expansion have a non-negligible effect on the amplification factor of the surface displacement.



Key wordsseismic response      plane P-wave      thermal effect      layered elastic foundation      transfer matrix method     
Received: 31 January 2024      Published: 25 April 2025
CLC:  TU 435  
Fund:  国家自然科学基金资助项目(52168053);青海省自然科学基金资助项目(2024-ZJ-922).
Corresponding Authors: Qiang MA     E-mail: zsfzyyq949892014@163.com;maqiang0104@163.com
Cite this article:

Yiqi YANG,Qiang MA. Seismic response of P-wave incident layered elastic foundation site under thermal effect. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 717-729.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.007     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/717


热效应作用下P波入射成层弹性地基场地的地震响应

基于热弹性介质中弹性波的传播理论,建立平面P波入射下的成层弹性地基场地模型. 根据亥姆霍兹矢量分解原理,在基岩-成层弹性地基层系统中采用传递矩阵法,推导得到成层弹性地基层中波幅系数转换矩阵,获得热效应作用下平面P波入射成层弹性地基场地地震响应的解析解答. 通过数值计算,分析热传导系数、介质温度、固相比热容等热物性参数对成层弹性地基场地地震地面运动的影响规律. 结果表明:当入射角为0~90°时,热效应下的水平位移放大系数相对于等温条件下的减小了40.53%,竖向位移放大系数相对于等温条件下的增加了8.28%,成层弹性地基的水平和竖向位移放大系数峰值分别比均质弹性地基的增加了33.17%和38.12%. 随着介质温度的增大,水平位移放大系数逐渐减小,竖向位移放大系数逐渐增大;随着频率的增大,地表水平和竖向位移放大系数逐渐增大. 软硬土层在土层中的排列次序、固相比热容和热膨胀系数对地表位移放大系数的影响均不可忽视.


关键词: 地震响应,  平面P波,  热效应,  成层弹性地基,  传递矩阵法 
Fig.1 Simplified model of layered elastic foundation site
参数数值
基岩层层I层II
tq/s2.0×10?72.0×10?72.0×10?7
ρ/(kg·m?32 7002 7002 700
cs/(J·kg?1·K?11 0461 0461 046
T/K293.2293.2293.2
λ/GPa12.09.09.0
μ/GPa8.04.04.0
tθ/s1.5×10?71.5×10?71.5×10?7
α/K?14.0×10?44.0×10?44.0×10?4
K/(J·s?1·m?1·K?13.03.03.0
土层厚度h/m1010
ω/Hz555
Tab.1 Parameters for validating numerical solutions in layered elastic foundation [32]
Fig.2 Displacement magnification factors under thermal effect homogeneous elastic foundations
参数数值
基岩层层I层II
tq/s2.0×10?72.0×10?72.0×10?7
ρ/(kg·m?32 7002 7002 650
cs/(J·kg?1·K?11 0461 0461 046
T/K293.2293.2293.2
λ/GPa12.09.08.0
μ/GPa8.04.08.0
tθ/s1.5×10?71.5×10?71.5×10?7
α/K?13.0×10?43.0×10?43.0×10?4
K/(J·s?1·m?1·K?13.03.03.0
Tab.2 Calculation parameters of layered elastic foundation[15,32]
Fig.3 Comparison of displacement magnification factors for different elastic foundations
Fig.4 Displacement magnification factors under different heat conduction coefficients
Fig.5 Displacement magnification factors under different temperatures
Fig.6 Three-dimensional contour plot of displacement magnification factor with solid specific heat capacity and thermal expansion coefficient
Fig.7 Three-dimensional contour plot of displacement magnification factor with heat flux and temperature gradient phase delay time
Fig.8 Displacement magnification factors under different incident frequencies (two theoretical models)
Fig.9 Displacement magnification factors in different typical layered elastic foundations
[1]   周凤玺, 张家齐, 曹小林 梯度饱和多孔材料中弹性波的截止频率[J]. 浙江大学学报: 工学版, 2016, 50 (4): 744- 749
ZHOU Fengxi, ZHANG Jiaqi, CAO Xiaolin Analysis of cut-off frequencies for functionally graded fluid-saturated materials[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 744- 749
[2]   周凤玺, 梁玉旺 多空沟对弹性波的散射及隔振性能分析: 平面P-SV波入射[J]. 振动工程学报, 2023, 36 (3): 789- 795
ZHOU Fengxi, LIANG Yuwang Analysis of elastic wave scattering and vibration isolation performance of multiple open trenches: plane P-SV wave incident[J]. Journal of Vibration Engineering, 2023, 36 (3): 789- 795
[3]   丘磊, 田钢, 石战结, 等 起伏地表条件下有限差分地震波数值模拟——基于广义正交曲线坐标系[J]. 浙江大学学报: 工学版, 2012, 46 (10): 1923- 1931
QIU Lei, TIAN Gang, SHI Zhanjie, et al Finite-difference method for seismic wave numerical simulation in presence of topography: in generalized orthogonal curvilinear coordinate system[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (10): 1923- 1931
[4]   刘中宪, 武凤娇, 王冬 沉积盆地-山体耦合场地对平面P波、SV波和Rayleigh波的二维散射分析[J]. 工程力学, 2016, 33 (2): 160- 171
LIU Zhongxian, WU Fengjiao, WANG Dong Two dimensional scattering analysis of planar P, SV, and Rayleigh waves by coupled alluvial basin-mountain terrain[J]. Engineering Mechanics, 2016, 33 (2): 160- 171
doi: 10.6052/j.issn.1000-4750.2014.05.0396
[5]   LIU Z, WANG Z, CHENG A H D, et al The method of fundamental solutions for the elastic wave scattering in a double-porosity dual-permeability medium[J]. Applied Mathematical Modelling, 2021, 97: 721- 740
doi: 10.1016/j.apm.2021.04.021
[6]   BA Z, SANG Q, LIANG J Seismic analysis of a lined tunnel in a multi-layered TI saturated half-space due to qP1-and qSV-waves[J]. Tunnelling and Underground Space Technology, 2022, 119: 104248
doi: 10.1016/j.tust.2021.104248
[7]   DUHAMEL J M C. Second memorandum on thermodynamic phenomena [J]. Journal of the Ecole Polytechnique, 1937, 15(25): 1–57.
DUHAMEL J M C. Second memorandum on thermodynamic phenomena [J]. Journal of the Ecole Polytechnique , 1937, 15(25): 1–57.
[8]   NEUMANN F E, MEYER O E. Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers [M]. Leipzig: B. G. Teubner, 1885: 1798–1895.
[9]   BIOT M A. Thermoelasticity and irreversible thermodynamics [J]. 1956, 27(3): 240–253.
[10]   LORD H W, SHULMAN Y A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15 (5): 299- 309
doi: 10.1016/0022-5096(67)90024-5
[11]   GREEN A E, LINDSAY K A Thermoelasticity[J]. Journal of Elasticity, 1972, 2 (1): 1- 7
doi: 10.1007/BF00045689
[12]   GREEN A E, NAGHDI P M A re-examination of the basic postulates of thermomechanics[J]. Proceedings: Mathematical and Physical Sciences, 1991, 432 (1885): 171- 194
[13]   GREEN A E, NAGHDI P M Thermoelasticity without energy dissipation[J]. Journal of Elasticity, 1993, 31 (3): 189- 208
doi: 10.1007/BF00044969
[14]   ABOUELREGAL A E Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model[J]. International Journal of Engineering Science, 2011, 49 (8): 781- 791
doi: 10.1016/j.ijengsci.2011.03.007
[15]   SINHA A N, SINHA S B Reflection of thermoelastic waves at a solid half-space with thermal relaxation[J]. Journal of Physics of the Earth, 1974, 22 (2): 237- 244
doi: 10.4294/jpe1952.22.237
[16]   SINHA S B, ELSIBAI K A Reflection of thermoelastic waves at a solid half-space with two thermal relaxation times[J]. Journal of Thermal Stresses, 1996, 19 (8): 749- 762
doi: 10.1080/01495739608946205
[17]   SINHA S B, ELSIBAI K A Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two relaxation times[J]. Journal of Thermal Stresses, 1997, 20 (2): 129- 145
doi: 10.1080/01495739708956095
[18]   ABD-ALLA A N, AL-DAWY A A S The reflection phenomena of SV-waves in a generalized thermoelastic medium[J]. International Journal of Mathematics and Mathematical Sciences, 2000, 23 (8): 529- 546
doi: 10.1155/S0161171200004221
[19]   SHARMA J N, KUMAR V, CHAND D Reflection of generalized thermoelastic waves from the boundary of a half-space[J]. Journal of Thermal Stresses, 2003, 26 (10): 925- 942
doi: 10.1080/01495730306342
[20]   SINGH B Reflection of SV waves from the free surface of an elastic solid in generalized thermoelastic diffusion[J]. Journal of Sound and Vibration, 2006, 291 (3/4/5): 764- 778
[21]   SINGH B Reflection of P and SV waves from free surface of an elastic solid with generalized thermodiffusion[J]. Journal of Earth System Science, 2005, 114 (2): 159- 168
doi: 10.1007/BF02702017
[22]   KUMAR R, SHARMA J Reflection of plane waves from the boundaries of a micropolar thermoelastic half-space without energy dissipation[J]. International Journal of Applied Mechanics and Engineering, 2005, 10 (4): 631- 645
[23]   CHAKRABORTY N, SINGH M C Reflection and refraction of a plane thermoelastic wave at a solid–solid interface under perfect boundary condition, in presence of normal initial stress[J]. Applied Mathematical Modelling, 2011, 35 (11): 5286- 5301
doi: 10.1016/j.apm.2011.04.026
[24]   HOU W, FU L Y, CARCIONE J M, et al Reflection and transmission of inhomogeneous plane waves in thermoelastic media[J]. Frontiers in Earth Science, 2022, 10: 850331
doi: 10.3389/feart.2022.850331
[25]   王相宝, 赵凡 单相土体与饱和土体地下结构地震反应对比研究[J]. 四川水泥, 2022, (3): 22- 23
WANG Xiangbao, ZHAO Fan Comparative study of seismic response of underground structures in single-phase and saturated soils[J]. Sichuan Cement, 2022, (3): 22- 23
[26]   杨猛. 地震SV波全反射作用下的场地反应 [D]. 西安: 西安理工大学, 2022: 1–77.
YANG Meng. Site response under seismic SV wave total reflection [D]. Xi’an: Xi’an University of Technology, 2022: 1–77.
[27]   王进廷, 金峰, 张楚汉 位于弹性半空间上的理想流体层动力反应—平面P波入射[J]. 工程力学, 2003, 20 (6): 12- 17
WANG Jinting, JIN Feng, ZHANG Chuhan Dynamic response of ideal fluid layer overlying elastic half-space due to P-wave incidence[J]. Engineering Mechanics, 2003, 20 (6): 12- 17
doi: 10.3969/j.issn.1000-4750.2003.06.003
[28]   ZHAO W, CHEN W, YANG D, et al Analytical solution for seismic response of tunnels with composite linings in elastic ground subjected to Rayleigh waves[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107113
doi: 10.1016/j.soildyn.2021.107113
[29]   李志远. 复杂层状地基中的波动传播和地下结构地震响应的研究[D]. 大连: 大连理工大学, 2019: 1–211.
LI Zhiyuan. The research of wave propagation and seismic response of underground structures in complex layered soil [D]. Dalian: Dalian University of Technology, 2019: 1–211.
[30]   BA Z, FU J, LIU Y, et al Scattering of elastic spherical P, SV, and SH waves by three-dimensional hill in a layered half-space[J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106545
doi: 10.1016/j.soildyn.2020.106545
[31]   董立东. 双层场地在斜入射地震波作用下的地震响应 [D]. 西安: 西安理工大学, 2023: 1–91.
DONG Lidong. Seismic response of a two-layer field under oblique incident seismic waves [D]. Xi’an: Xi’an University of Technology, 2023: 1–91.
[32]   YANG Y, MA Q Study on seismic ground motion of P-wave incident elastic foundation free field under thermal effect[J]. Journal of Theoretical and Applied Mechanics, 2023, 61 (4): 445- 457
[33]   LIU H, DAI G, ZHOU F, et al Propagation behavior of homogeneous plane-P1-wave at the interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium[J]. The European Physical Journal Plus, 2021, 136 (11): 1163
doi: 10.1140/epjp/s13360-021-02144-x
[34]   侯婉婷, 符力耘, 魏佳, 等 热弹性介质中波传播特征[J]. 地球物理学报, 2021, 64 (4): 1364- 1374
HOU Wanting, FU Liyun, WEI Jia, et al Characteristics of wave propagation in thermoelastic medium[J]. Chinese Journal of Geophysics, 2021, 64 (4): 1364- 1374
doi: 10.6038/cjg2021N0458
[35]   张宇昊. 基于分布式声场传感的地震勘探仪关键技术研究[D]. 南京: 南京大学, 2020: 1–79.
ZHANG Yuhao. Research on key technologies of seismic exploration instrument based on distributed acoustic sensing [D]. Nanjing: Nanjing University, 2020: 1–79.
[36]   徐明江, 魏德敏, 何春保 层状非饱和土地基的轴对称稳态动力响应[J]. 岩土力学, 2011, 32 (4): 1113- 1118
XU Mingjiang, WEI Demin, HE Chunbao Axisymmetric steady state dynamic response of layered unsaturated soils[J]. Rock and Soil Mechanics, 2011, 32 (4): 1113- 1118
doi: 10.3969/j.issn.1000-7598.2011.04.027
[1] Wenjin ZHANG,Guoqiang LI,Xiaohua HU,Jingzhou ZHANG,Botao HUANG,Shengzhi ZHAO. Calculation method of seismic response for steel frame coupled with rocking structure and dampers[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1866-1873.
[2] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[3] Wei WANG,Shang-xin GAO,Ai-qun LI,Xing-xing WANG. Seismic responses of disc spring isolated-single degree of freedom system based on asymmetric model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1095-1105.
[4] Yang QU,Yong-feng LUO,Zhao-chen ZHU,Qing-long HUANG. Modal stiffness method for seismic response analysis of latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1068-1077.
[5] Yu ZHANG,Kai-lin ZHANG,Yuan YAO. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1656-1662.
[6] Shuai LIU,Chao PAN,Zhi-guang ZHOU. Seismic performance and parametric influences of damping-coupled wall system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 492-502.
[7] XU Jun, LI Ying-min, YANG Xu-yao, HU Xiao-ping. Seismic response of overhead catenary system in high-intensity seismic zones under multi-support excitations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1575-1582.
[8] LEI Yan-yun, XIE Xu. Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1926-1934.
[9] HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1170-1179.
[10] YAO Xiao-wen, JIANG Jian-qun. Correlation between ground motion intensity measures and seismic response of high arch dam[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 254-261.
[11] ZHANG Yong-le, JIANG Jian-qun, LIU Jia-jin, WANG Zhen-yu. Seismic damage assessment of reinforced concrete structure and
its seismic design
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1294-1300.
[12] TUN Yu-Hua, LOU Wen-Juan. Semi-analytical solution of elastic circular arch under horizontal random seismic excitation[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 156-159+165.