Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (3): 480-487    DOI: 10.3785/j.issn.1008-973X.2025.03.005
    
Static performance and failure analysis of reinforced truss concrete hollow composite slab
Xudong CHEN1,2,3(),Qinyong MA1,3,*()
1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
2. College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
3. National-local Joint Engineering Laboratory of Building Health Monitoring and Disaster Prevention Technology, Hefei 230601, China
Download: HTML     PDF(3535KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A reinforced truss concrete composite slab with a built-in hollow thin-walled box was proposed, which combined the advantages of the cast-in-place hollow slab and the prefabricated reinforced truss concrete composite slab. Static full-scale model bending performance tests were conducted on five reinforced truss concrete hollow composite slabs and a reinforced truss concrete cast-in-place hollow slab under monotonic load. The failure mode, bending bearing capacity, overall working performance of the section, crack distribution, steel strain, and concrete strain of the plate were analyzed. Results showed that under regular use, there was no horizontal crack along the composite surface of the laminated hollow slab, and the coordination performance between the prefabricated layer and the cast-in-place layer was good. The failure process conformed to the characteristics of suitable reinforcement failure. Multiple evenly distributed cracks appeared at the bottom of the board, resulting in good overall deformation performance. Composite hollow slabs still had sufficient load-bearing capacity and safety reserves after cracking. The experimental and theoretical values of the ultimate bearing capacity were consistent, with an error of within 6.0%, meeting the specifications. The overall stress performance of the prefabricated composite hollow slabs with the same size and specification was relatively similar to that of cast-in-place hollow slabs, so both of them could meet the engineering design requirements.



Key wordshollow composite slab      steel truss      static test      bending performance      failure analysis     
Received: 15 January 2024      Published: 10 March 2025
CLC:  TU 375.2  
  TU 317.1  
Fund:  建筑健康监测与灾害预防国家地方联合工程实验室开放课题资助项目(GG22KF001);安徽省住房城乡建设科学技术计划资助项目(2022-YF083).
Corresponding Authors: Qinyong MA     E-mail: xdchen_ah@163.com;qymaah@126.com
Cite this article:

Xudong CHEN,Qinyong MA. Static performance and failure analysis of reinforced truss concrete hollow composite slab. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 480-487.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.03.005     OR     https://www.zjujournals.com/eng/Y2025/V59/I3/480


钢筋桁架混凝土空心叠合板静力性能试验与破坏分析

结合现浇空心板与预制钢筋桁架混凝土叠合板的优点,提出内置空心薄壁箱的钢筋桁架混凝土叠合板. 进行5块钢筋桁架混凝土空心叠合板、1块钢筋桁架混凝土现浇空心板在单调荷载作用下的静力足尺模型受弯性能试验. 分析板的破坏形态、受弯承载力、截面整体工作性能、裂缝分布、钢筋应变、混凝土应变等. 结果表明:空心叠合板在正常使用状态下,未出现沿叠合面开展的水平裂缝,预制层与现浇层协调工作性能良好;破坏过程符合适筋破坏的破坏特征;板底出现多条均匀分布的裂缝,整体变形性能较好;空心叠合板在开裂后仍有充分的承载力安全储备;极限承载力的试验值和理论值基本一致,误差均小于6.0% ,满足规范规定;同一尺寸规格的预制空心叠合板与现浇空心板的整体受力性能较接近,均可满足工程设计要求.


关键词: 空心叠合板,  钢筋桁架,  静力试验,  受弯性能,  破坏分析 
Fig.1 Structural diagram of hollow composite slab
Fig.2 Hollow thin-walled box
试件H/mml1×b1/mm×mmh1/mm
DKB1-1180450×45080
DKB1-2180450×45090
DKB1-3180400×40080
DKB1-4180450×45060
DKB2-1200450×450100
XJKB180450×45080
Tab.1 Basic parameters of hollow slab specimens
Fig.3 Dimension and arrangement of reinforcements of specimens
d/ mm$ {f_{\mathrm{y}}} $/ MPa$ {f_{\mathrm{u}}} $/ MPa$ {E_{\mathrm{s}}} $/(105 MPa)
63054132.1
85006112.0
Tab.2 Mechanical properties of reinforcing steel
Fig.4 Schematic diagram of specimens loading device
Fig.5 Layout of measuring points for specimen displacement gauge and strain gauge
Fig.6 Crack distribution diagram of specimen
Fig.7 Comparison of load and deflection curves at mid-span
Fig.8 Comparison curve of load and strain at mid-span of reinforcement
Fig.9 Mid span strain of concrete on bottom and top surfaces of slab under different loads
Fig.10 Strain distribution of concrete in mid span section
Fig.11 Slab end adhesion slip curve
Fig.12 Simplified calculation model for ultimate bearing capacity of normal section
试 件Fcr / kNFu,t / kNFu,c / kNμ /%Fcr / Fu,t)/%
DKB1-136.40141.91142.86?1.6725.65
DKB1-237.30148.00142.863.4725.20
DKB1-337.50140.27142.86?1.8526.73
DKB1-434.60144.27142.860.9823.98
XJKB34.25144.77142.861.3223.66
DKB2-142.29171.85161.805.8524.61
Tab.3 Comparison of load bearing capacity
[1]   王俊, 赵基达, 胡宗羽 我国建筑工业化发展现状与思考[J]. 土木工程学报, 2016, 49 (5): 1- 8
WANG Jun, ZHAO Jida, HU Zongyu Review and thinking on development of building industrialization in China[J]. China Civil Engineering Journal, 2016, 49 (5): 1- 8
[2]   刘洋, 李志武, 杨思忠, 等 装配式建筑叠合楼板研究进展[J]. 混凝土与水泥制品, 2019, (1): 61- 68
LIU Yang, LI Zhiwu, YANG Sizhong, et al Research progress on prefabricated building composite floors[J]. China Concrete and Cement Products, 2019, (1): 61- 68
[3]   黄海林, 吴方伯, 祝明桥, 等 板肋形式对预制带肋底板混凝土叠合板受弯性能的影响研究[J]. 建筑结构学报, 2015, 36 (10): 66- 72
HUANG Hailin, WU Fangbo, ZHU Mingqiao, et al Influence of rib details on flexural behavior of concrete composite slab with precast prestressed ribbed panel[J]. Journal of Building Structures, 2015, 36 (10): 66- 72
[4]   杨悦, 姜雪蔚, 聂鑫, 等 开槽密拼混凝土叠合板受力性能试验研究[J]. 建筑结构学报, 2023, 44 (7): 142- 151
YANG Yue, JIANG Xuewei, NIE Xin, et al Experimental study on mechanical behavior of concrete composite slab with rabbets[J]. Journal of Building Structures, 2023, 44 (7): 142- 151
[5]   LIU J P, HU H F, LI J, et al. Flexural behavior of prestressed concrete composite slab with precast inverted T-shaped ribbed panels [J]. Engineering Structures , 2020, 215: 110687.
[6]   周旺华. 现代混凝土叠合结构[M]. 北京: 中国建筑工业出版社, 1998.
[7]   吴方伯, 刘彪, 邓利斌, 等 预应力混凝土叠合空心楼板静力性能试验研究[J]. 建筑结构学报, 2014, 35 (12): 10- 19
WU Fangbo, LIU Biao, DENG Libin, et al Experimental study on static behavior of prestressed concrete composite hollow floors[J]. Journal of Building Structures, 2014, 35 (12): 10- 19
[8]   吴方伯, 刘彪, 罗继丰 预应力混凝土叠合空心楼板的受剪性能试验研究[J]. 工程力学, 2016, 33 (3): 196- 203
WU Fangbo, LIU Biao, LUO Jifeng Experimental study on shear resisting properties of prestressed concrete composite hollow core slabs[J]. Engineering Mechanics, 2016, 33 (3): 196- 203
[9]   武立伟, 陈海彬, 刘亦斌 混凝土预制叠合空心楼板静力性能试验研究[J]. 建筑结构学报, 2018, 39 (Suppl.2): 36- 42
WU Liwei, CHEN Haibin, LIU Yibin Experimental study on static performance of precast concrete composite hollow floors[J]. Journal of Building Structures, 2018, 39 (Suppl.2): 36- 42
[10]   BARAN E Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs[J]. Engineering Structures, 2015, 98: 109- 117
doi: 10.1016/j.engstruct.2015.04.017
[11]   罗斌 构造形式对复合叠合板弯曲刚度的影响[J]. 湖南大学学报: 自然科学版, 2023, 50 (1): 36- 44
LUO Bin Title influence of shape on bending stiffness of composite slab[J]. Journal of Hunan University: Natural Sciences, 2023, 50 (1): 36- 44
[12]   陈旭东, 马芹永, 黄坤. 一种新型钢筋桁架混凝土叠合空心楼盖及其实施方法: 202211270505.0 [P]. 2023–05–23.
[13]   中国工程建设标准化协会. 钢筋桁架混凝土叠合板应用技术规程: T/CECS715—2020 [S]. 北京: 中国建筑工业出版社, 2020.
[14]   熊学玉, 葛益芃, 姚刚峰 预制预应力混凝土双T板受弯性能足尺试验研究[J]. 建筑结构学报, 2022, 43 (2): 127- 136
XIONG Xueyu, GE Yipeng, YAO Gangfeng Experimental study on flexural behavior of full-scale precast prestressed concrete double-tee members[J]. Journal of Building Structures, 2022, 43 (2): 127- 136
[15]   林彦, 宋健凯, 仲崇廷 不同拼缝构造措施的叠合板受力性能试验研究[J]. 工业建筑, 2020, 50 (6): 45- 50
LIN Yan, SONG Jiankai, ZHONG Chongting Experimental research on mechanical properties of composite concrete slabs with different joint construction measures[J]. Industrial Construction, 2020, 50 (6): 45- 50
[16]   赵作周, 韩文龙, 钱稼茹, 等 整体式拼缝连接的预制空心楼板受弯性能试验研究[J]. 工业建筑, 2016, 46 (5): 86- 91
ZHOU Zuozhou, HAN Wenlong, QIAN Jiaru, et al Experimental study on flexural behavior of precast concrete hollow slab connected by monolithic seam[J]. Industrial Construction, 2016, 46 (5): 86- 91
[17]   丁克伟, 陈东, 刘运林, 等 一种新型拼缝结构的叠合板受力机理及试验研究[J]. 土木工程学报, 2015, 48 (10): 64- 69
DING Kewei, CHEN Dong, LIU Yunlin, et al Theoretical and experimental study on mechanical behavior of laminated slabs with new type joints[J]. China Civil Engineering Journal, 2015, 48 (10): 64- 69
[1] Zhen-yang SHE,Ya-le LI,Xue-hong LI,Xiu-li XU,Jing-kai LIU. Investigation on seismic performance of thin-walled high piers with rocking self-centering double-limb with energy-consuming tie beam[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 977-987.
[2] Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.
[3] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[4] Jia-li TAN,Sheng-en FANG. Safety evaluation of a steel truss using mechanical Bayesian networks[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2170-2177.
[5] Xiao-shun WU,Chen-hui HUANG,Xin-tao WANG,Hua DENG. Fast measurement of static displacement field in cable-strut tensile structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1086-1094.
[6] Yue-dong JIN,Ru-hao WANG,Yang ZHAO. Experiment of six-member basic structure with a pre-embedded-bolt joint for single-layer latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2100-2108.
[7] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[8] WANG Yang-wei, LAN Bo-wen, LIU Kai, ZHAO Dong-biao. Modeling and experiment of flexible manipulator actuated by shape memory alloy wire[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 628-634.
[9] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.
[10] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.