Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2076-2083    DOI: 10.3785/j.issn.1008-973X.2024.10.011
    
Multiple subspace weighted moving window PCA for plant-wide process incipient fault detection
Yimeng SONG(),Bing SONG*(),Hongbo SHI,Yongbo KANG
Key Laboratory of Smart Manufacturing in Energy Chemical Process of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
Download: HTML     PDF(912KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Incipient faults are difficult to detect in plant-wide processes compared to conventional faults due to the lack of distinctive features. An incipient fault detection method based on multiple subspace weighted moving window principal component analysis (PCA) was proposed by shifting the detection perspective from the global to the local to improve the detection rate and sensitivity of incipient faults in plant-wide processes. Process variables were partitioned into different subspaces using a two-layer subspace partitioning method that combines process knowledge and data-driven approaches. A weighted moving window was used to increase the offset of incipient faults, while a local outlier factor (LOF) algorithm was introduced into PCA to further focus on the local features of the data to model fault detection in each subspace. The monitoring results in each subspace were fused with information by the Bayesian inference fusion method to obtain distributed monitoring results. The proposed method was validated by industrial examples, and the results showed that the method effectively improved the accuracy and detection speed of incipient fault detection in plant-wide processes.



Key wordsplant-wide process      incipient fault detection      two-layer subspace partitioning      weighted moving window      local outlier factor      Bayesian inference fusion     
Received: 22 January 2024      Published: 27 September 2024
CLC:  TP 277  
Fund:  国家自然科学基金资助项目(62073140, 62073141, 62103149, 62273147);上海明日之星计划资助项目(21QA1401800);国家重点研发计划资助项目(2020YFC1522502, 2020YFC1522505).
Corresponding Authors: Bing SONG     E-mail: y30220987@mail.ecust.edu.cn;songbing@ecust.edu.cn
Cite this article:

Yimeng SONG,Bing SONG,Hongbo SHI,Yongbo KANG. Multiple subspace weighted moving window PCA for plant-wide process incipient fault detection. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2076-2083.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.011     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2076


基于多子空间加权移动窗主成分分析的全厂流程早期故障检测

早期故障的特征不明显,在全厂流程中比常规故障难检测. 为了提高全厂流程中早期故障的检测率和灵敏度,将检测视角由全局转移至局部,提出基于多子空间加权移动窗主成分分析(PCA)的早期故障检测方法. 使用结合过程知识和数据驱动的双层子空间划分方法,将过程变量划分到不同子空间中. 使用加权的移动窗口增大早期故障的偏移量,将局部离群因子(LOF)算法引入PCA,以便进一步关注数据的局部特征,在每个子空间中建立故障检测模型. 通过贝叶斯推理融合法对各子空间的监测结果进行信息融合,获得分布式监测结果. 通过工业实例验证所提方法的性能. 结果表明,所提方法在全厂流程中有效提升了早期故障检测的准确率和灵敏度.


关键词: 全厂流程,  早期故障检测,  两层子空间划分,  加权移动窗口,  局部离群因子,  贝叶斯推理融合 
Fig.1 Schematic diagram of multiple subspace weighted moving window PCA model
区块第一层子区块第二层
1$ {x}_{1}-{x}_{9},{x}_{11}-{x}_{13},{x}_{15},{x}_{16},{x}_{18}, {x}_{20}-{x}_{28},{x}_{42}-{x}_{46},{x}_{51},{x}_{52} $1.1$ {x}_{1},{x}_{2},{x}_{12},{x}_{15},{x}_{21},{x}_{42},{x}_{44},{x}_{45} $
1.2$ {x}_{3},{x}_{6},{x}_{24},{x}_{27},{x}_{43},{x}_{51} $
1.3$ {x}_{4},{x}_{5},{x}_{8},{x}_{9},{x}_{11},{x}_{22},{x}_{23},{x}_{25},{x}_{26},{x}_{28},{x}_{52} $
1.4$ {x}_{7},{x}_{13},{x}_{16}{x}_{18},{x}_{20},{x}_{46},{x}_{52} $
2$ {x}_{5},{x}_{6},{x}_{10}-{x}_{16},{x}_{18},{x}_{20},{x}_{22},{x}_{29}-{x}_{36},{x}_{46}-{x}_{48},{x}_{52} $2.1$ {x}_{5},{x}_{11},{x}_{14},{x}_{15},{x}_{22},{x}_{29}-{x}_{36},{x}_{52} $
2.2$ {x}_{6},{x}_{10},{x}_{12},{x}_{13},{x}_{16},{x}_{18},{x}_{20},{x}_{46}-{x}_{50} $
3$ {x}_{4},{x}_{5},{x}_{14}-{x}_{20},{x}_{37}-{x}_{41},{{x}_{45},x}_{46},{x}_{48}-{x}_{50} $3.1$ {x}_{4},{x}_{5},{x}_{14}-{x}_{20},{x}_{37}-{x}_{41},{x}_{45},{x}_{46},{x}_{48}-{x}_{50} $
Tab.1 Two-layer subspace partitioning results of Tennessee Eastman process
Fig.2 Simulation results of fault 4 based on different algorithms
Fig.3 Simulation results of fault 13 based on different algorithms
Fig.4 Simulation results of fault 8 based on different algorithms
Fig.5 Simulation results of fault 18 based on different algorithms
算法统计
参数
故障4故障8故障13故障18
FARFDRFARFDRFARFDRFARFDR
PCA$ {T}^{2} $2.5049.631.2597.371.8790.033.1287.52
PCA$ \mathrm{S}\mathrm{P}\mathrm{E} $13.1310016.8797.7510.0492.6412.5289.89
W-PL$ \mathrm{l}\mathrm{o}\mathrm{f} $2.7699.253.4597.25094.286.2189.27
M-PLBIC8.131007.5097.885.0095.215.6289.14
M-WPBIC0.7099.881.9299.111.9295.933.2091.61
Tab.2 False alarm and fault detection rates for faults condition %
[1]   SILVA A F, VERCRUYSSE J, VERVAET C, et al In-depth evaluation of data collected during a continuous pharmaceutical manufacturing process: a multivariate statistical process monitoring approach[J]. Journal of Pharmaceutical Sciences, 2019, 108 (1): 439- 450
doi: 10.1016/j.xphs.2018.07.033
[2]   TAO Y, SHI H, SONG B, et al A distributed adaptive monitoring method for performance indicator in large-scale dynamic process[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (10): 10425- 10433
doi: 10.1109/TII.2023.3240732
[3]   LIU D, SHANG J, CHEN M Principal component analysis-based ensemble detector for incipient faults in dynamic processes[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5391- 5401
doi: 10.1109/TII.2020.3031496
[4]   贾瑶, 李帅, 柴天佑 金矿生产全流程控制系统设计与实现[J]. 控制工程, 2022, 29 (5): 873- 887
JIA Yao, LI Shuai, CHAI Tianyou Design and implementation of whole process control system for gold ore production[J]. Control Engineering of China, 2022, 29 (5): 873- 887
[5]   ZHOU J, ZHANG S, WANG J A dual robustness projection to latent structure method and its application[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (2): 1604- 1614
doi: 10.1109/TIE.2020.2970664
[6]   MA J, ZHANG J Progress of process monitoring for the multi-mode process: a review[J]. Applied Sciences, 2022, 12 (14): 7207
doi: 10.3390/app12147207
[7]   WANG B, YAN X, JIANG Q, et al Generalized dice’s coefficient-based multi-block principal component analysis with bayesian inference for plant-wide process monitoring[J]. Journal of Chemometrics, 2015, 29 (3): 165- 178
doi: 10.1002/cem.2687
[8]   CHEN X, WANG J, DING S X Complex system monitoring based on distributed least squares method[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18 (14): 1892- 1900
[9]   JIANG Q, YAN X, HUANG B Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and bayesian inference[J]. IEEE Transactions on Industrial Electronics, 2015, 63 (1): 377- 386
[10]   KONG X, YANG Z, LUO J, et al Extraction of reduced fault subspace based on KDICA and its application in fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3505212
[11]   王光, 单发顺, 钱禹丞, 等 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74 (7): 2967- 2978
WANG Guang, SHAN Fashun, QIAN Yucheng, et al Incipient fault detection method for chemical process based on ensemble learning transfer entropy[J]. CIESC Journal, 2023, 74 (7): 2967- 2978
[12]   CHEN Z, YANG C, PENG T, et al A cumulative canonical correlation analysis-based sensor precision degradation detection method[J]. IEEE Transactions on Industrial Electronics, 2019, 8 (66): 6321- 6330
[13]   WONG P K, YANG Z, VONG C M, et al Real-time fault diagnosis for gas turbine generator systems using extreme learning machine[J]. Neurocomputing, 2014, 128: 249- 257
[14]   DENG X, CAI P, CAO Y, et al Two-step localized kernel principal component analysis based incipient fault diagnosis for nonlinear[J]. Industrial and Engineering Chemistry Research, 2020, 59 (13): 5956- 5968
doi: 10.1021/acs.iecr.9b06826
[15]   PILARIO K E S, CAO Y Canonical variate dissimilarity analysis for process incipient fault detection[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5308- 5315
doi: 10.1109/TII.2018.2810822
[16]   QIN Y, YAN Y, JI H, et al Recursive correlative statistical analysis method with sliding windows for incipient fault detection[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (4): 4185- 4194
doi: 10.1109/TIE.2021.3070521
[17]   FENG Z, LI Y, XIAO B, et al Process monitoring of abnormal working conditions in the zinc roasting process with an ALD-based LOF-PCA method[J]. Process Safety and Environmental Protection, 2022, 161: 640- 650
doi: 10.1016/j.psep.2022.03.064
[18]   ZENG J, HUANG W, WANG Z, et al Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process[J]. Journal of Process Control, 2019, 83: 63- 76
doi: 10.1016/j.jprocont.2019.09.004
[19]   CAO Y, YUAN X, WANG Y, et al Hierarchical hybrid distributed PCA for plant-wide monitoring of chemical processes[J]. Control Engineering Practice, 2021, 111: 104784
doi: 10.1016/j.conengprac.2021.104784
[20]   BROWN G, POCOCK A, ZHAO M J, et al Conditional likelihood maximisation: a unifying framework for information theoretic feature selection[J]. The Journal Of Machine Learning Research, 2012, 13 (1): 27- 66
[21]   AMIN M T, KHAN F, AHMED S, et al A data-driven Bayesian network learning method for process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 110- 122
doi: 10.1016/j.psep.2021.04.004
[22]   CHEN H, JIANG B, ZHANG T, et al Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems[J]. Neurocomputing, 2020, 396: 429- 437
doi: 10.1016/j.neucom.2018.07.103
[23]   KONG X, BI Y, GLASS D Detecting anomalies in sequential data augmented with new features[J]. Artificial Intelligence Review, 2020, 53 (1): 625- 652
doi: 10.1007/s10462-018-9671-x
[24]   JIANG Q, YAN X Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32: 38- 50
doi: 10.1016/j.jprocont.2015.04.014
[25]   DOWNS J J, VOGEL E F A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17 (3): 245- 255
doi: 10.1016/0098-1354(93)80018-I
[1] Xiang-yu KONG,Ya-lin CHEN,Jia-yu LUO,Zhi-yan YANG. Fault detection method based on dynamic inner concurrent projection to latent structure[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1297-1306.
[2] Xiang-yu KONG,Xiao-bing WANG,Hong-zeng LI,Jia-yu LUO. On-line fault monitoring technology for industrial stationary/nonstationary complex system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1856-1866.
[3] Xing LIU,Jian-bo YU. Attention convolutional GRU-based autoencoder and its application in industrial process monitoring[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1643-1651.
[4] Wei LI,Jian-jun ZHANG. Integrated security control method for industrial cyber-physical system with attack and fault[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1185-1198.
[5] TAN Xiao dong, LUO Jian lu, LI Qing, QIU Jing. Fault evolution testability modeling and prediction for mechanical systems[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 442-448.
[6] CHEN Te-huan, XU Wei-hua, XU Chao, XIE Lei.
Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1850-1855.
[7] LI De-jun, YANG Jun-cheng, LIN Dong-dong, YANG Can-jun, JIN Bo, CHEN Ying. Power monitor system in seafloor junction box
based on MCU and CPLD
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1369-1374.
[8] YU Bao-hua , YANG Shi-xi, ZHOU Xiao-feng. Optimization of sensor allocation based on
fault-measurement point mutual information
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 156-162.
[9] DUAN Bin, LIANG Jun, FEI Zheng-shun, YANG Min, HU Bin. Nonlinear semi-parametric modeling mothed based on GA-ANN[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 977-983.
[10] XU Gui-Bin, ZHOU Dong-Hua. Fault prediction for state-dependent fault based on online learning neural network[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1251-1254.
[11] DU Wen-Chi, WANG Kun, JIAN Feng. Feature space dimensionreduction based process monitoring of solvent dehydration separation process[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1255-1259.
[12] CAO Yu-Peng, TIAN Hua-Min. Information divergence based process fault detection and diagnosis[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1315-1320.
[13] LIN Yong, ZHOU Xiao-Jun, YANG Xian-Yong, DENG. Intelligent fault diagnosis methods based on bispectrum recognition and artificial immune network[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1777-1782.