1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China 2. Jiangxi Communications Investment Group Limited Company, Nanchang 330025, China
The shear flow bearing ratio of concrete slab and steel roof was theoretically deduced according to the distribution law of shear stress and shear flow of composite bridge deck section under the condition of complete connection between concrete slab and steel roof. It was proved that the longitudinal shear force between layers of composite bridge deck is smaller than that calculated by the formula of composite beam. The finite element calculation of complete connection between layers and discrete connection of shear studs simulated by spring element supported this view, which verified the correctness of the view that the vertical shear force of composite bridge deck section was mainly borne by the web. The arrangement of shear studs in transverse direction was explored. Results show that the shear studs should be arranged along the transverse full width of the composite bridge deck, the shear studs should be densified on both sides of the web, and the shear studs should not be arranged directly above the web.
Lianzhen ZHANG,Mou SONG,Yusheng LI,Wensheng FAN,Honglin WU. Distribution law of shear stress of composite bridge deck and arrangement of transverse shear stud. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1636-1646.
Fig.1Distribution of shear stress and shear flow in I-shaped section
Fig.2Schematic diagram of shear flow from web to top plate
Fig.3Schematic diagram of shear flow from web into concrete slab and steel top plate
Fig.4Stress relationship at intersection of concrete and steel top plate
Fig.5Structural dimension of I-beam composite bridge deck
Fig.6Simply supported finite element model of I-beam composite bridge deck structure
构件类型
网格编号
网格位置
网格大小
混凝土板
①
腹板两侧
20 mm×30 mm
混凝土板
②
腹板上方
7 mm×30 mm
钢顶板
③
腹板两侧
20 mm×8 mm
钢顶板
④
腹板上方
7 mm×8 mm
钢腹板
⑤
腹板
7 mm×75.2 mm
钢底板
⑥
腹板两侧
36.25 mm×32 mm
钢底板
⑦
腹板下方
7 mm×32 mm
混凝土板、钢梁
⑧
纵向
50 mm
Tab.1Meshing parameter of finite element model
材料种类
E/MPa
ν
混凝土
3.45×104
0.2
钢材
2.06×105
0.3
Tab.2Material characteristic of composite bridge deck structure
Fig.7Load layout
Fig.8Transverse shear stress distribution of I-beam composite deck slab flange
Fig.9Linear descending segment fitting of transverse shear stress
ts/mm
η
tc=15 cm
tc=12 cm
tc=10 cm
tc=8 cm
10
0.731
0.685
0.645
0.592
12
0.694
0.645
0.602
0.547
14
0.660
0.609
0.565
0.509
16
0.630
0.576
0.531
0.476
18
0.602
0.547
0.502
0.446
20
0.576
0.521
0.476
0.421
Tab.3Proportion of shear flow borne by concrete slab in combined bridge deck structure
Fig.10Diagram of vertical shear force calculation
截面组成部分
Vy/kN
混凝土板
2.55
钢顶板
0.829
钢腹板
48.1
钢底板
0.927
Tab.4Vertical shear force distribution of section
Fig.11Distribution of shear stress in cross-section of I-beam composite bridge deck slab
Fig.12Longitudinal shear stress distribution on joint surface
Fig.13Arrangement method of shear stud
Fig.14Transverse shear stress distribution in flange plate after discrete connection
Fig.15Distribution law of shear flow during shear stud connection
Fig.16Calculation results of longitudinal shear force of shear stud
Fig.17Three lateral arrangement methods of shear stud
Fig.18Longitudinal shear force on shear stud in three arrangement methods
截面组成部分
Vy/kN
混凝土板
2.05
钢顶板
0.868
钢腹板
48.6
钢底板
0.947
Tab.5Calculation results of vertical shear force
剪力钉布置方式
Vz/N
奇数均匀布置
4384.50
偶数均匀布置
4357.17
非均匀布置
4778.57
现有理论计算
9689.45
Tab.6Sum of longitudinal shear force by single row shear stud
Fig.19Cross section of composite bridge deck steel box girder
Fig.20Load layout diagram
Fig.21Layout of shear stud
Fig.22Longitudinal shear force on shear stud with different arrangement method (1/4 cross section)
截面组成部分
Vy/kN
混凝土板
3.793
钢顶板
0.146
钢腹板
115.519
钢底板
0.350
Tab.7Calculation result of vertical shear force
剪力钉的布置方式
Vz/N
均匀布置
7 144.07
非均匀布置
6 169.95
现有理论计算
9 707
Tab.8Sum of longitudinal shear force by steel box girder’s single row shear stud
Fig.23Longitudinal shear force distribution of shear stud in cross-section at different encryption spacing for shear stud on both sides of web plate
[6]
GAO Liqiang Influence of crossbeam web cutout shape on fatigue performance of steel orthotropic deck[J]. Railway Standard Design, 2014, 58 (12): 67- 71
[7]
蒲黔辉, 高立强, 刘振标, 等 基于热点应力法的正交异性钢桥面板疲劳验算[J]. 西南交通大学学报, 2013, 48 (3): 395- 401 PU Qianhui, GAO Liqiang, LIU Zhenbiao, et al Fatigue assessment of orthotropic steel bridge deck based on hot spot stress method[J]. Journal of Southwest Jiaotong University, 2013, 48 (3): 395- 401
doi: 10.3969/j.issn.0258-2724.2013.03.001
[8]
钱冬生 关于正交异性钢桥面板的疲劳[J]. 桥梁建设, 1996, 1 (2): 10- 15 QIAN Dongsheng About the fatigue of orthotropic steel bridge deck[J]. Bridge Construction, 1996, 1 (2): 10- 15
[9]
YE Huawen, YANG Zhe, HAN Bing, et al Failure mechanisms governing fatigue strength of steel–SFRC composite bridge deck with U-ribs[J]. Journal of Bridge Engineering, 2021, 26 (4): 4021014.1- .4021014.9
[10]
曹君辉. 钢-薄层超高性能混凝土轻型组合桥面结构基本性能研究[D]. 长沙: 湖南大学, 2016. CAO Junhui. Research on basic performance of steel-thin UHPC lightweight composite deck [D]. Changsha: Hunan University, 2016.
[11]
CAO Junhui, SHAO Xudong, DENG Lu, et al Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer[J]. Journal of Bridge Engineering, 2017, 22 (1): 04017005.1- 04017005.16
[12]
王立国, 邵旭东, 曹君辉, 等 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报: 工学版, 2020, 54 (10): 2027- 2037 WANG Liguo, SHAO Xudong, CAO Junhui, et al Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 2027- 2037
[13]
张庆. 正交异性钢-砼组合桥面的轮载扩散效应研究[D]. 成都: 西南交通大学, 2020.
[1]
ROBERT C, JOHN F In-service response of an orthotropic steel deck compared with design assumptions[J]. Transportation Research Record, 2000, 1696 (1): 100- 108
doi: 10.3141/1696-13
[2]
ZHANG Qinghua, LIU Yiming, BAO Yi, et al Fatigue performance of orthotropic steel-concrete composite deck with large-size longitudinal U-shaped ribs[J]. Engineering Structures, 2017, 150 (1): 864- 874
[13]
ZHANG Qing. The local diffusion effect of wheel load on orthotropic steel-concrete composite deck [D]. Chengdu: Southwest Jiaotong University, 2020.
[14]
SHI Zhanchong, SU Qingtian, KAVOURA F, et al Behavior of short-headed stud connectors in orthotropic steel-UHPC composite bridge deck under fatigue loading[J]. International Journal of Fatigue, 2022, 160 (1): 106845.1- 106845.14
[15]
GUAN Yanhua, WU Jiajie, SUN Renjuan, et al Shear behavior of short headed studs in steel-ECC composite structure[J]. Engineering Structures, 2022, 250 (1): 113423.1- 113423.15
[16]
KRUSZEWSKI D, WILLE K, ZAGHI A E Push-out behavior of headed shear studs welded on thin plates and embedded in UHPC[J]. Engineering Structures, 2018, 173 (1): 429- 441
[17]
张士红, 李斐然, 邵旭东 钢-UHPC组合桥面板界面抗剪理论及设计方法[J]. 公路工程, 2021, 46 (2): 157- 163 ZHANG Shihong, LI Feiran, SHAO Xudong Theory and design method of interfacial shear resistance for steel-UHPC composite bridge deck[J]. Highway Engineering, 2021, 46 (2): 157- 163
[18]
史占崇, 苏庆田, 陈亮 钢-UHPC组合桥面板中焊接栓钉的疲劳性能及设计布置方法[J]. 中国公路学报, 2023, 36 (6): 107- 122 SHI Zhanchong, SU Qingtian, CHEN Liang Fatigue behavior and design layout method of welded stud connectors in steel-UHPC composite bridge deck[J]. China Journal of Highway and Transport, 2023, 36 (6): 107- 122
[19]
蔡昊. 既有正交异性板STC连接机理及设计理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. CAI Hao. Research on connection mechanism and design theory of existing orthotropic plate with STC [D]. Harbin: Harbin Institute of Technology, 2021.
[20]
聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011.
[21]
JOHNSON R P, ANDERSON D EN 1994 Eurocode 4: design of composite steel and concrete structures[J]. Civil Engineering, 2001, 144 (6): 33- 38
[22]
HIROSHI K, SHIGEYUKI M Evaluation for fatigue strength of shear studs in steel plate-concrete composite deck[J]. Journal of Structural Engineering, 2008, 64 (4): 765- 777
宋谋. OSD-UHPC组合桥面板结构层间连接机理及设计理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. SONG Mou. Research on interlayer connection mechanism and design theory of OSD-UHPC composite bridge deck structure [D]. Harbin: Harbin Institute of Technology, 2022.
[3]
程庆, 王大明, 吴春颖 钢桥面沥青铺装层病害及成因分析[J]. 公路工程, 2010, 35 (3): 112- 115 CHENG Qing, WANG Daming, WU Chunying Analysis on diseases and their causes of steel deck asphalt pavement[J]. Highway Engineering, 2010, 35 (3): 112- 115
doi: 10.3969/j.issn.1674-0610.2010.03.027
[4]
赵国云 钢桥面灌注式树脂混凝土铺装材料与结构研究[J]. 公路交通科技, 2019, 36 (10): 67- 73 ZHAO Guoyun Study on material and structure of PRC for steel bridge deck pavement[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (10): 67- 73
[5]
张清华, 卜一之, 李乔 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30 (3): 14- 30 ZHANG Qinghua, BO Yizhi, LI Qiao Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 14- 30
doi: 10.3969/j.issn.1001-7372.2017.03.002