|
|
Modeling low-carbon travel mode choice by incorporating carbon incentive latent variable |
Yan HE1,2( ),Yilin SUN1,3,4,*( ),Zhijian ZHAO4,Yang SHU1 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Center for Balanced Architecture, Zhejiang University, Hangzhou 310000, China 3. The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310013, China 4. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract The latent variables affecting travelers’ intention to low-carbon travel were comprehensively considered based on the theory of planned behavior and the theory of value-belief-norm in order to analyze travelers’ low-carbon travel behaviors and internal mechanisms. A multi-cause and multi-indicator model was constructed by using the empirical data of Hangzhou, and the values of latent variables were calibrated. A hybrid choice model and a Logit model without latent variables were constructed to compare and analyze travelers’ weekday mode choice behavior. A binary hybrid choice model was constructed to analyze the travel behavior shift of high carbon people under carbon incentives. Results show that the latent variables such as attitude, perceived behavioral control, and view of incentive significantly affect the travelers' willingness to travel in a low-carbon way and the choice of travel modes. The hybrid choice model has a better goodness-of-fit than the Logit model without latent variables, and the prediction accuracy improves by 4.6%. 64.4% of the high-carbon individuals tends to choose low-carbon modes under carbon incentives, showing that the carbon incentives can effectively promote travel modes shift behavior. There is some heterogeneity of the variables attitude and travel time in travel mode shift behavior.
|
Received: 19 July 2023
Published: 23 July 2024
|
|
Fund: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2023C01240);国家自然科学基金资助项目(52131202). |
Corresponding Authors:
Yilin SUN
E-mail: yanhe@zju.edu.cn;yilinsun@zju.edu.cn
|
融合碳激励潜变量的低碳出行方式选择模型
以计划行为理论与价值-信念-规范理论为理论基础,综合考虑影响出行者低碳出行意愿的潜变量,以分析出行者低碳出行行为及内在机理. 基于杭州市实证数据,建立多原因多指标模型,标定潜变量适配值. 构建混合选择模型与无潜变量的Logit模型,对比分析出行者工作日方式的选择行为. 建立二元混合选择模型,分析碳激励下高碳人群的出行行为转变. 结果表明,态度、知觉感知控制、激励态度等潜变量显著影响出行者的低碳出行意愿与出行方式选择,混合选择模型比无潜变量的Logit模型具有更好的拟合优度,预测精度提升了4.6%,碳激励下64.4%的高碳人群倾向于选择低碳出行,碳激励可以有效促进公众的出行方式转变,变量态度、出行时间在公众出行方式转变上存在一定的异质性.
关键词:
交通工程,
低碳出行,
方式选择,
碳激励,
混合选择模型
|
|
[1] |
STRATHMAN J G, DUEKER K J, DAVIS J S Effects of household structure and selected travel characteristics on trip chaining[J]. Transportation, 1994, 21 (1): 23- 45
doi: 10.1007/BF01119633
|
|
|
[2] |
GE Y B, BIEHL A, RAVULAPARTHY S, et al Joint modeling of access mode and parking choice of air travelers using revealed preference data[J]. Transportation Research Record, 2021, 2675 (11): 699- 713
doi: 10.1177/03611981211019037
|
|
|
[3] |
KIM E J, KIM Y, JANG S, et al Tourists’ preference on the combination of travel modes under mobility-as-a-service environment[J]. Transportation Research Part A: Policy and Practice, 2021, 150 (8): 236- 255
|
|
|
[4] |
WAYGOOD E O D, SUN Y L, SCHMOCKER J D Transport sufficiency: introduction and case study[J]. Travel Behaviour and Society, 2019, 15 (2): 54- 62
|
|
|
[5] |
JIA N, LI L Y, LING S, et al Influence of attitudinal and low-carbon factors on behavioral intention of commuting mode choice: a cross-city study in China[J]. Transportation Research Part A: Policy and Practice, 2018, 111 (5): 108- 118
|
|
|
[6] |
LIU D Y, DU H B, SOUTHWORTH F, et al The influence of social-psychological factors on the intention to choose low-carbon travel modes in Tianjin, China[J]. Transportation Research Part A: Policy and Practice, 2017, 105 (11): 42- 53
|
|
|
[7] |
BEN-AKIVA M, MCFADDEN D, TRAIN K, et al Hybrid choice models: progress and challenges[J]. Marketing Letters, 2002, 13 (3): 163- 175
doi: 10.1023/A:1020254301302
|
|
|
[8] |
鞠鹏, 周晶, 徐红利, 等 基于混合选择模型的汽车共享选择行为研究[J]. 交通运输系统工程与信息, 2017, 17 (2): 7- 13 JU Peng, ZHOU Jing, XU Hongli, et al Travelers’ choice behavior of car sharing based on hybrid choice model[J]. Journal of Transportation System Engineering and Information Technology, 2017, 17 (2): 7- 13
|
|
|
[9] |
景鹏, 隽志才, 查奇芬 考虑心理潜变量的出行方式选择行为模型[J]. 中国公路学报, 2014, 27 (11): 84- 92 JING Peng, JUAN Zhicai, ZHA Qifen Incorporating psychological latent variables into travel mode choice model[J]. China Journal of Highway and Transport, 2014, 27 (11): 84- 92
|
|
|
[10] |
徐标, 路庆昌, 徐鹏程, 等 考虑群体差异的低碳出行意向与行为一致性研究[J]. 浙江大学学报: 理学版, 2023, 50 (3): 378- 390 XU Biao, LU Qingchang, XU Pengcheng, et al A study on group difference between low-carbon transportation intention and consistent behavior[J]. Journal of Zhejiang University: Science Edition, 2023, 50 (3): 378- 390
|
|
|
[11] |
ZAILANI S, IRANMANESH M, MASRON T A, et al Is the intention to use public transport for different travel purposes determined by different factors?[J]. Transportation Research Part D: Transport and Environment, 2016, 49 (8): 18- 24
|
|
|
[12] |
WANG H, GUI H, REN C, et al Factors influencing urban residents’ intention of garbage sorting in china: an extended tpb by integrating expectancy theory and norm activation model[J]. Sustainability, 2021, 13 (23): 12985
doi: 10.3390/su132312985
|
|
|
[13] |
马壮林, 崔姗姗, 胡大伟 限行政策下城市居民低碳出行意向[J]. 吉林大学学报: 工学版, 2022, 52 (11): 2607- 2617 MA Zhuanglin, CUI Shanshan, HU Dawei Urban residents’ low-carbon travel intention after implementation of driving restriction policy[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52 (11): 2607- 2617
|
|
|
[14] |
HUANG Y, GAO L Influence mechanism of commuter’s low-carbon literacy on the intention of mode choice: a case study in Shanghai, China[J]. International Journal of Sustainable Transportation, 2022, 16 (12): 1131- 1143
doi: 10.1080/15568318.2021.1975325
|
|
|
[15] |
JI Z, GONG Y, TONG Z, et al Factors influencing public support for the individual low-carbon behavior rewarding system: evidence from a large-scale longitudinal survey in China[J]. Journal of Cleaner Production, 2023, 409: 137187
doi: 10.1016/j.jclepro.2023.137187
|
|
|
[16] |
JENN A, SPRINGEL K, GOPAL A R Effectiveness of electric vehicle incentives in the United States[J]. Energy Policy, 2018, 119 (8): 349- 356
|
|
|
[17] |
ZHANG S, HU D, LIN T, et al Determinants affecting residents’ waste classification intention and behavior: a study based on TPB and ABC methodology[J]. Journal of Environmental Management, 2021, 290 (14): 112591
|
|
|
[18] |
AJZEN I The theory of planned behavior[J]. Organizational Behavior and Human Decision Processes, 1991, 50 (2): 179- 211
doi: 10.1016/0749-5978(91)90020-T
|
|
|
[19] |
STERN P C New environmental theories: toward a coherent theory of environmentally significant behavior[J]. Journal of Social Issues, 2000, 56 (3): 407- 424
doi: 10.1111/0022-4537.00175
|
|
|
[20] |
TAO Y J, DUAN M S, DENG Z Using an extended theory of planned behaviour to explain willingness towards voluntary carbon offsetting among Chinese consumers[J]. Ecological Economics, 2021, 185 (7): 107068
|
|
|
[21] |
BAMBERG S, MÖSER G Twenty years after Hines, Hungerford, and Tomera: a new meta-analysis of psycho-social determinants of pro-environmental behaviour[J]. Journal of Environmental Psychology, 2007, 27 (1): 14- 25
doi: 10.1016/j.jenvp.2006.12.002
|
|
|
[22] |
STEG L, DREIJERINK L, ABRAHAMSE W Factors influencing the acceptability of energy policies: a test of VBN theory[J]. Journal of Environmental Psychology, 2005, 25 (4): 415- 425
doi: 10.1016/j.jenvp.2005.08.003
|
|
|
[23] |
KIATKAWSIN K, HAN H Young travelers' intention to behave pro-environmentally: merging the value-belief-norm theory and the expectancy theory[J]. Tourism Management, 2017, 59 (2): 76- 88
|
|
|
[24] |
SKINNER C J. Probability proportional to size (PPS) sampling [EB/OL]. (2014-11-27)[2022-10-24]. https://doi.org/10.1002/9781118445112.stat03346.
|
|
|
[25] |
杭州市统计局. 2021年杭州市统计年鉴[EB/OL]. (2021-11-15)[2022-10-24]. http://tjj.hangzhou.gov.cn/art/2021/11/15/art_1229453592_3968147.html.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|