Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 1040-1049    DOI: 10.3785/j.issn.1008-973X.2024.05.017
    
Numerical study on flow-drag-reduction mechanism of resident microbubble array
Rui ZHU1,2(),Xingyu HE1,Chenhong ZHAO1,Yu LIU2,Huanbin ZHANG1,Tengfei CHEN1,Xin TAN1,Zhirong LIU1,*()
1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
2. Information Engineering School, Xizang Minzu University, Xianyang 712082, China
Download: HTML     PDF(3089KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A numerical simulation study was conducted using the finite volume method and large eddy simulation (LES) method to analyze the complex turbulent flow near the wall of a flat plate and with the resident microbubble array in order to improve the theoretical mechanism of drag reduction by the resident microbubble array. The proper orthogonal decomposition (POD) method was used to extract and compare the near-wall turbulent quasi-coherent structure. Results showed that the wall shear stress of the resident microbubble array was more stable and decreased by 13.7% approximately compared with the flat plate. The dynamic deformation of the gas/liquid interface of the microbubbles caused intermittent flow separation and reattachment in the boundary layer, which suppressed the "bursting" phenomenon of low-speed fluid upcast and high-speed fluid down-sweep, leading to a 5.6 Hz reduction in the bursting frequency of turbulent coherent structures. The POD method can effectively extract the main distribution characteristics of the near-wall turbulent quasi-coherent structures. The presence of microbubbles strengthens the small-scale structure in the near-wall turbulent region, promoting a more homogeneous distribution of turbulent kinetic energy within the flow field, suppressing the development of quasi-coherent structure and demonstrating the good drag-reduction property.



Key wordsturbulence      resident microbubble      drag-reduction      proper orthogonal decomposition     
Received: 14 May 2023      Published: 26 April 2024
CLC:  U 674  
Fund:  中央军委国防创新科技计划资助项目(22TQ2218TS01006);福建省自然科学基金资助项目(2022J01058);厦门市自然科学基金资助项目(3502220227179);气动噪声控制重点实验室基金资助项目(2201ANCL20220105);西藏民族大学校内科研项目(23MDY03).
Corresponding Authors: Zhirong LIU     E-mail: zhurui@xmu.edu.cn;1zr1222@126.com
Cite this article:

Rui ZHU,Xingyu HE,Chenhong ZHAO,Yu LIU,Huanbin ZHANG,Tengfei CHEN,Xin TAN,Zhirong LIU. Numerical study on flow-drag-reduction mechanism of resident microbubble array. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1040-1049.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.017     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/1040


驻留式微气泡阵列流动减阻机理数值研究

为了完善驻留式微气泡阵列减阻的机理理论,基于有限体积方法,采用大涡模拟(LES)方法对平板及驻留微气泡阵列近壁面复杂湍流流动开展数值模拟研究,采用本征正交分解法(POD)提取2种模型近壁区湍流拟序结构进行对比分析. 结果表明:相较于平板,驻留微气泡阵列近壁面切应力变化更加平稳,减小了约13.7%;微气泡气/水界面的动态形变使边界层间歇性流动分离再附着,抑制低速流体上抛、高速流体下扫形成的“猝发”现象,湍流相干结构“猝发”频率减小5.6 Hz. 利用POD方法,能够有效地提取近壁面复杂湍流拟序结构的主要分布特征,微气泡的存在加强了湍流近壁区内的小尺度结构,促进流场内湍流动能的均匀分布,抑制了拟序结构的发展,体现了驻留微气泡良好的减阻特性.


关键词: 湍流,  驻留微气泡,  减阻,  本征正交分解 
Fig.1 Computational domain and mesh division of plate and resident microbubbles
Fig.2 Comparison of normal average velocity in plate turbulent boundary layer with test data
Fig.3 Comparison of turbulent pulsation intensity between LES and DNS
Fig.4 Wall shear stress distribution of plates and surface of microbubble arrays
Fig.5 Upcast, down-sweep burst[30]
Fig.6 Flow velocity contour of plate turbulent boundary layer at different time
Fig.7 Flow velocity contour of surface of microbubble array at different time
Fig.8 Velocity evolution of plates and surface of microbubble arrays at different time
Fig.9 Spectrum of normal velocity on plate and surface of microbubble array
Fig.10 Turbulence kinetic energy evolution of plate and surface of microbubble array
Fig.11 Zero order/average flow field
Fig.12 Cumulative distribution curve of total energy of each order
Fig.13 Variation curve of energy proportion for each order
Fig.14 Modal nephograms of turbulent boundary layer on plate
Fig.15 Modal nephograms of turbulent boundary layer on surface of microbubble array
Fig.16 Modal nephograms of turbulent boundary layers on surface of local microbubble arrays
[1]   PERLIN M, DOWLING D R, CECCIO S L Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers[J]. Journal of Fluids Engineering: Transactions of the ASME, 2016, 138 (9): 091104
doi: 10.1115/1.4033295
[2]   李政. 非光滑疏水表面的微气泡减阻技术研究[D]. 大连: 大连理工大学, 2013.
LI Zheng. The study of drag reduction of microbubbles on nonsmooth surface with hydrophobic property [D]. Dalian: Dalian University of Technology, 2013.
[3]   PARK H J, TASAKA Y, MURAI Y Bubbly drag reduction investigated by time-resolved ultrasonic pulse echography for liquid films creeping inside a turbulent boundary layer[J]. Experimental Thermal and Fluid Science, 2018, 103 (1): 66- 77
[4]   ALAM H S, SUTIKNO P, SOELAIMAN T A F, et al CFD-PBM coupled modeling of bubble size distribution in a swirling-flow nanobubble generator[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16 (1): 677- 693
doi: 10.1080/19942060.2022.2043186
[5]   PARK H J, SAITO D, TASAKA Y, et al Color-coded visualization of microbubble clouds interacting with eddies in a spatially developing turbulent boundary layer[J]. Experimental Thermal and Fluid Science, 2019, 109 (1): 109919
[6]   KIM S, OSHIMA N, PARK H J, et al Direct numerical simulation of frictional drag modulation in horizontal channel flow subjected to single large-sized bubble injection[J]. International Journal of Multiphase Flow, 2021, 145 (1): 103838
[7]   YOON D, PARK H J, TASAKA Y, et al Drag coefficient of bubbles sliding beneath a towed model ship with variable tilt angles[J]. International Journal of Multiphase Flow, 2022, 149 (1): 103995
[8]   KIM K, NAGARATHINAM D, AHN B K, et al Air-water bubbly flow by multiple vents on a hydrofoil in a steady free-stream[J]. Applied Sciences, 2021, 11 (21): 9890
doi: 10.3390/app11219890
[9]   MOHAMMED G, MOHAMMED K, AHMED N, et al Numerical investigations of micro bubble drag reduction effect for container ships[J]. Marine Systems and Ocean Technology, 2021, 16 (3): 199- 212
[10]   JHA N K, BHATT A, GOVARDHAN R N Effect of bubble distribution on wall drag in turbulent channel flow[J]. Experiments in Fluids, 2019, 60 (8): 1- 18
[11]   陈正云, 张清福, 潘翀, 等 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35 (3): 52- 59
CHEN Zhengyun, ZHANG Qingfu, PAN Chong, et al An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35 (3): 52- 59
[12]   姚琰, 罗金玲, 朱坤, 等 利用微气泡减小平板湍流摩阻实验研究[J]. 气体物理, 2017, 2 (4): 29- 35
YAO Yan, LUO Jinling, ZHU Kun, et al Experimental study of turbulent drag reduction on a plate using microbubbles[J]. Physics of Gases, 2017, 2 (4): 29- 35
[13]   宋武超, 王聪, 魏英杰, 等 水下航行体俯仰运动微气泡减阻特性试验研究[J]. 兵工学报, 2019, 40 (9): 1902- 1910
SONG Wuchao, WANG Cong, WEI Yingjie, et al Experimental study of microbubble flow and drag reduction characteristics of underwater vehicle in pitching movement[J]. Acta Armamentarii, 2019, 40 (9): 1902- 1910
[14]   EVSEEV A R Experimental study of the effect of static pressure on turbulent friction reduction in gas saturation of boundary layer[J]. Journal of Engineering Hermophysics, 2019, 28 (2): 190- 198
doi: 10.1134/S1810232819020036
[15]   MONTAZERI M H, ALISHAHI M M Investigation of different flow parameters on air layer drag reduction (ALDR) performance using a hybrid stability analysis and numerical solution of the two-phase flow equations[J]. Ocean Engineering, 2020, 196 (1): 106779
[16]   ASIAGBE K S, FAIRWEATHER M, NJOBUENWU D O, et al Large eddy simulation of microbubble transport in a turbulent horizontal channel flow[J]. International Journal of Multiphase Flow, 2018, 94 (1): 80- 93
[17]   MURAI Y, SAKAMAKI H, KUMAGAI I, et al Mechanism and performance of a hydrofoil bubble generator utilized for bubbly drag reduction ships[J]. Ocean Engineering, 2020, 216 (1): 108085
[18]   FENG Y Y, HU H, PENG G Y, et al Microbubble effect on friction drag reduction in a turbulent boundary layer[J]. Ocean Engineering, 2020, 211 (1): 107583
[19]   TENJIMBAYASHI M,DOI K, NAITO M. Microbubble flows in superwettable fluidic channels [J]. RSC Advances , 2019, 9(37): 21220–21224.
[20]   ZHU R, ZHANG H B, WEN W Q, et al Flow-drag reduction performance of a resident electrolytic microbubble array and its mechanisms[J]. Ocean Engineering, 2023, 268 (1): 113496
[21]   朱睿, 庄启彬, 李尚, 等 电解微气泡生长行为及驻留稳定性[J]. 兵工学报, 2021, 42 (5): 1023- 1031
ZHU Rui, ZHUANG Qibin, LI Shang, et al Growth behaviors and resident stability of electrolyzed microbubble[J]. Acta Armamentarii, 2021, 42 (5): 1023- 1031
[22]   GRUNDMANN R. Boundary layer equations and methods of solutions [M]// WENDT J F. Computational fluid dynamics: an introduction . Berlin: Springer, 2009: 153-181.
[23]   TAMURA T, ONO Y LES analysis on aeroelastic instability of prisms in turbulent flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (12-15): 1827- 1846
doi: 10.1016/j.jweia.2003.09.032
[24]   SMAGORINSKY J General circulation experiments with the primitive equations: I. the basic experiment[J]. Monthly Weather Review, 1963, 91 (3): 99- 164
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[25]   朱睿, 张焕彬, 庄启彬, 等 驻留式电解微气泡流动稳定性及减阻性能[J]. 工程科学与技术, 2022, 54 (4): 147- 154
ZHU Rui, ZHANG Huanbin, ZHUANG Qibin, et al In-flow stability and flow drag reduction performance of resident electrolyzed microbubble array[J]. Advanced Engineering Sciences, 2022, 54 (4): 147- 154
[26]   SANDHAM N D, YAO Y F, LAWAL A A Large-eddy simulation of transonic turbulent flow over a bump[J]. International Journal of Heat and Fluid Flow, 2003, 24 (4): 584- 595
doi: 10.1016/S0142-727X(03)00052-3
[27]   DE GRAAFF D B, EATON J K Reynolds-number scaling of the flat-plate turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422 (1): 319- 346
[28]   SPALART P R Direct simulation of a turbulent boundary layer up to Rθ=1410[J]. Journal of Fluid Mechanics, 1988, 187 (1): 61- 98
[29]   LUND T S, WU X, SQUIRES K D Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1988, 140 (2): 233- 258
[30]   许春晓 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45 (1): 111- 140
XU Chunxiao Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45 (1): 111- 140
[1] Qi-bin ZHUANG,Huan-bin ZHANG,Zhi-rong LIU,Rui ZHU. Water flow field evolution characteristics of oblique water-exit process for different shapes underwater launched vehicles[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 200-208.
[2] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[3] Shuang LIN,Rong WU,Bo WANG,Zi-jie ZHANG,Kun-teng WEI. Experimental research on cold flow field characteristics of turbine blade oblique rib channel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 823-832.
[4] Jian-ming TANG,Xu XIE. Investigation on vibration serviceability of long-span suspension footbridge under crosswind[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1903-1911.
[5] Zhi-lin SUN,Jia-yun ZHENG,Li-li ZHU,Lin CHONG,Jun LIU,Ju-yuan LUO. Influence of submerged vegetation on flow structure and sediment deposition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 71-80.
[6] KUANG Cui ping, SONG Hong lin, GU Jie, MA Zhen. Three-dimensional characteristics of wind-induced current and turbulence at Huanghua Harbor[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 38-45.
[7] YANG Mao,XU Shan-shan. Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 149-153.