Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 988-1000    DOI: 10.3785/j.issn.1008-973X.2024.05.012
    
Unified analytical model for load-temperature effect of steel-concrete composite girder
Jiang LIU1(),Ning ZHANG2,Yongjian LIU1,3,*(),Yinping MA3
1. School of Highway, Chang’an University, Xi'an 710064, China
2. School of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, China
3. School of Civil Engineering, Chongqing University, Chongqing 400044, China
Download: HTML     PDF(2505KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A composite girder analytical model under the combined action of non-uniform distributed load, axial force, bending moment and nonlinear temperature load was proposed by considering interface slip based on Euler-Bernoulli beam theory. Analytical expressions of deflection, interface shear force, slip and sectional stress were deduced. Simply supported beam and continuous beam were taken as analysis examples. The influence of interface stiffness and temperature action on interfacial slip and deflection was discussed. Results showed that deflection caused by temperature action and interface slip of composite girders were determined by equivalent temperature slip strain and equivalent temperature curvature, which could be calculated by decomposing the temperature distribution of concrete deck and steel girder into three independent parts: uniform temperature, vertical linear temperature difference and residual temperature. The interface slips of simply supported beam and 2-span continuous beam under temperature action presented an anti-symmetric distribution along the beam length, and the slip was mainly concentrated in the range of less than 2 m of the end. The tensile stress level was high at the bottom surface of the concrete deck at the end of the composite girder due to the slip, which could exceed 2 MPa, increasing the cracking risk. The deflection influence coefficient under temperature action was proposed, which could be used for quick calculation of the temperature-caused deflection of composite girders. The deflection influence coefficient is not only related to the bending stiffness ratio of composite beams with complete shear connection and no interface connection and the combined effect coefficient, but also directly affected by the temperature effect coefficient.



Key wordssteel-concrete composite girder      interface slip      temperature action      equivalent temperature slip strain      equivalent temperature curvature      deflection influence coefficient     
Received: 15 May 2023      Published: 26 April 2024
CLC:  U 448  
Fund:  国家自然科学基金资助项目(52108111); 中国博士后科学基金资助项目 (2021M692747); 长安大学中央高校基本科研业务费专项资金资助项目(300102212102).
Corresponding Authors: Yongjian LIU     E-mail: liu-jiang@chd.edu.cn;liuyongjian@chd.edu.cn
Cite this article:

Jiang LIU,Ning ZHANG,Yongjian LIU,Yinping MA. Unified analytical model for load-temperature effect of steel-concrete composite girder. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 988-1000.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.012     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/988


钢-混组合梁荷载-温度效应的统一解析模型

基于欧拉伯努利梁理论,提出非均布荷载、轴向力、梁端弯矩和非线性温度分布共同作用下的有滑移组合梁统一解析模型,推导组合梁挠度、界面剪力、滑移及截面应力的计算公式,开展简支组合梁和连续组合梁算例分析,讨论界面刚度和温度作用对界面滑移和挠度的影响. 研究结果表明,组合梁温度作用产生的挠度与界面滑移由等效温度滑移应变和等效温度曲率决定,可以通过将桥面板与钢梁的温度分布各自分解为有效温度、竖向线性温差和残余温度等相互独立的3部分进行计算. 简支梁和2跨连续梁算例在温度作用下的界面滑移沿梁长呈现反对称分布,滑移主要集中在距端部小于2 m的范围内,受滑移的影响,组合梁端部桥面板底面的拉应力水平较高,可以超过2 MPa,增加了底面混凝土开裂的风险. 提出了温度作用下界面滑移组合梁的挠度影响系数,可以用于组合梁挠度的快速计算,其大小不仅与界面完全连接与界面无连接时组合梁的抗弯刚度比和组合效应系数有关,还受温度作用系数的直接影响.


关键词: 钢-混组合梁,  界面滑移,  温度作用,  等效温度滑移应变,  等效温度曲率,  挠度影响系数 
Fig.1 Composite girder subject to external loads
Fig.2 Sectional dimension parameters
Fig.3 Differential element of composite girder subject to loads
Fig.4 Deformation of differential element of composite girder
Fig.5 Diagrams of structural system of composite girder
Fig.6 Mechanism of temperature-induced slip
Fig.7 Decomposition of temperature distribution
Fig.8 Example of composite girder bridge
Fig.9 Vertical temperature gradient pattern [21]
Fig.10 Decomposition of vertical temperature gradient pattern
温度作用模式te1/℃te2/℃ty1/(℃·mm?1)ty2/(℃·mm?1)εmχt / mm?1
升温模式1(HP-1)8.292.38?4.68×10?23.49×10?35.43×10?55.83×10?9
升温模式2(HP-2)2.799.34?2.95×10?21.43×10?2?8.41×10?51.39×10?7
降温模式(CP)?0.18?11.52?1.21×10?2?7.17×10?31.30×10?4?8.86×10?8
Tab.1 Values of temperature parameters εm and χt
Fig.11 Finite element model of composite girder
作用类型计算结果简支梁2跨连续梁
wmax/mmΔu/mmwmax/mmΔu/mm
q=16 N/mm解析解12.0750.03172.1210.0122
有限元解12.2210.03222.2210.0126
HP-1解析解?2.7360.0331?0.8750.0357
有限元解?2.8150.0345?0.9230.0375
HP-2解析解6.5730.04820.6710.0463
有限元解6.7330.04980.6950.0483
CP解析解?8.1760.0122?1.6190.0144
有限元解?8.4560.0127?1.6780.0149
Tab.2 Comparison between FEM solution and analytical solution of deflection and end slip (K = 5 000.8 N/mm2 )
Fig.12 Distribution of temperature caused deflection of composite girder
Fig.13 Distribution of temperature caused interfacial slip of composite girder
Fig.14 Longitudinal distribution of thermal stress of simply supported girder
Fig.15 Longitudinal distribution of thermal stress of continuous girder (right span)
Fig.16 Vertical distribution of thermal stress of composite girder
Fig.17 Influencing factor of deflection under different loads
Fig.18 Effects of temperature effect coefficient on deflection influence coefficient
[1]   刘永健, 高诣民, 周绪红, 等 中小跨径钢-混凝土组合梁桥技术经济性分析[J]. 中国公路学报, 2017, 30 (3): 1- 13
LIU Yongjian, GAO Yimin, ZHOU Xuhong, et al Technical and economic analysis in steel-concrete composite girder bridges with small and medium span[J]. China Journal of Highway and Transport, 2017, 30 (3): 1- 13
doi: 10.3969/j.issn.1001-7372.2017.03.001
[2]   刘永健, 刘江 钢-混凝土组合梁桥温度作用及效应研究综述[J]. 交通运输工程学报, 2020, 20 (1): 42- 59
LIU Yongjian, LIU Jiang Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (1): 42- 59
[3]   刘永健, 刘江, 张宁 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52 (5): 59- 78
LIU Yongjian, LIU Jiang, ZHANG Ning Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52 (5): 59- 78
[4]   ELLOBODY E, YOUNG B Performance of shear connection in composite beams with profiled steel sheeting[J]. Journal of Constructional Steel Research, 2006, 62 (7): 682- 694
doi: 10.1016/j.jcsr.2005.11.004
[5]   聂建国, 陶慕轩, 吴丽丽, 等 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45 (6): 110- 122
NIE Jianguo, TAO Muxuan, WU Lili, et al Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45 (6): 110- 122
[6]   NEWMARK N M, SIESS C D, VIEST I M Tests and analysis of composite beams with incomplete interaction[J]. Proceedings of the Society for Experimental Stress Analysis, 1951, 9 (1): 75- 92
[7]   GIRHAMMAR U A, GOPU V K A Composite beam-columns with interlayer slip: exact analysis[J]. Journal of Structural Engineering, 1993, 119 (4): 1265- 1282
doi: 10.1061/(ASCE)0733-9445(1993)119:4(1265)
[8]   聂建国, 沈聚敏 滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J]. 土木工程学报, 1997, 30 (1): 31- 36
NIE Jianguo, SHEN Jumin Influence of slip effect on bending strength of steel-concrete composite beams and its calculation[J]. China Civil Engineering Journal, 1997, 30 (1): 31- 36
[9]   XU R, WU Y Static, dynamic, and buckling analysis of partial interaction composite members using Timosinco's beam theory[J]. International Journal of Mechanical Sciences, 2007, 49 (10): 1139- 1155
doi: 10.1016/j.ijmecsci.2007.02.006
[10]   RANZI G, ZONA A A steel–concrete composite beam model with partial interaction including the shear deformability of the steel component[J]. Engineering Structures, 2007, 29 (11): 3026- 3041
doi: 10.1016/j.engstruct.2007.02.007
[11]   SCHNABL S, SAJE M, TURK G, et al Analytical solution of two-layer beam taking into account interlayer slip and shear deformation[J]. Journal of Structural Engineering, 2007, 133 (6): 886- 894
doi: 10.1061/(ASCE)0733-9445(2007)133:6(886)
[12]   AYOUB A, FILIPPOU F C Mixed formulation of nonlinear steel-concrete composite beam element[J]. Journal of Structural Engineering, 2000, 126 (3): 371- 381
doi: 10.1061/(ASCE)0733-9445(2000)126:3(371)
[13]   ČAS B, SAJE M, PLANINC I Nonlinear finite element analysis of composite planar frames with an interlayer slip[J]. Computers and Structures, 2004, 82 (23-26): 1901- 1912
doi: 10.1016/j.compstruc.2004.03.070
[14]   Actions on structures, Part1-5: general actions-thermal actions: Eurocode 1 [S]. Brussels: European Committee for Standardization, 1991.
[15]   周良, 陆元春, 李雪峰 钢-混凝土组合梁的温度应力计算[J]. 公路交通科技, 2012, 29 (5): 83- 88
ZHOU Liang, LU Yuanchun, LI Xuefeng Calculation of temperature stress of steel-concrete composite beam[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (5): 83- 88
doi: 10.3969/j.issn.1002-0268.2012.05.014
[16]   吴迅, 陈经伟, 肖春, 等 温差、收缩引起的钢-混凝土组合梁界面处剪力作用研究[J]. 结构工程师, 2009, 25 (1): 41- 44
WU Xun, CHEN Jingwei, XIAO Chun, et al Study on shear effect caused by temperature and shrinkage on the interface of steel-concrete composite beams[J]. Structural Engineers, 2009, 25 (1): 41- 44
[17]   陈玉骥, 叶梅新. 钢-混凝土结合梁在温度作用下的响应分析[J]. 中国铁道科学, 2001, 22(5): 48-53.
CHEN Yuji, YE Meixin. Analyses of responses of composite girders under the action of temperature [J]. China Railway Science , 2001, 22(5): 48-53.
[18]   朱坤宁, 万水 温差和荷载引起的FRP-钢组合梁界面剪应力分析[J]. 解放军理工大学学报:自然科学版, 2011, 12 (4): 387- 392
ZHU Kunning, WAN Shui Interfacial shear stress of FRP-steel composite beams subjected to temperature and load action[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2011, 12 (4): 387- 392
[19]   周勇超, 胡圣能, 宋磊, 等 钢-混凝土组合梁的温度骤变效应分析[J]. 交通运输工程学报, 2013, 13 (1): 20- 26
ZHOU Yongchao, HU Shengneng, SONG Lei, et al Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 20- 26
doi: 10.3969/j.issn.1671-1637.2013.01.004
[20]   刘永健, 刘江, 张宁, 等 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17 (4): 9- 19
LIU Yongjian, LIU Jiang, ZHANG Ning, et al Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 9- 19
doi: 10.3969/j.issn.1671-1637.2017.04.002
[21]   刘江, 刘永健, 马志元, 等 钢-混凝土组合梁桥的温度梯度作用:作用模式与极值分析[J]. 中国公路学报, 2022, 35 (9): 269- 286
LIU Jiang, LIU Yongjian, MA Zhiyuan, et al Temperature gradient action of steel-concrete composite girder bridge: action pattern and extreme value analysis[J]. China Journal of Highway and Transport, 2022, 35 (9): 269- 286
[22]   肖岩, 彭罗文, KUNNATH S 组合梁考虑滑移效应的理论分析[J]. 湖南大学学报:自然科学版, 2017, 44 (1): 77- 86
XIAO Yan, PENG Luowen, KUNNATH S Analysis of composite beams with interlayer slip[J]. Journal of Hunan University: Natural Sciences, 2017, 44 (1): 77- 86
[1] Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.
[2] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[3] XIANG Yi-qiang, HE Chao-chao, QIU Zheng. Calculation of long-term slippage for externally prestressing steel-concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 739-744.