Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (4): 795-804    DOI: 10.3785/j.issn.1008-973X.2023.04.017
    
Design of renewable energy systems for near-zero energy residence in hot summer and cold winter zone
Shu-qin CHEN1,2(),Ang YU1,Yan MING1,*(),De DING3,2,Yi YANG3,2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310012, China
3. The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310063, China
Download: HTML     PDF(1963KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Photovoltaic system, photothermal system and energy storage system of a near-zero energy residence were not optimized simultaneously and the installation locations of photovoltaic panels and photothermal panels on the building were not considered. An optimization design method of renewable energy systems was proposed by taking a typical near-zero energy residence in hot summer and cold winter zone as an example. The particle swarm optimization algorithm was utilized by taking average annual cost, comprehensive energy consumption and photovoltaic consumption rate as the objective respectively. The installation locations and capacity of photovoltaic panels and photothermal panels and capacity of batteries were optimized. Results show that average annual cost and comprehensive energy consumption can decrease by 15.8% and 87.7% respectively compared with the traditional scheme by taking average annual cost and comprehensive energy consumption as the objective respectively. Comprehensive energy consumption decreases by 65.8% while average annual cost increases by 4.3% by taking average annual cost and comprehensive energy consumption as targets simultaneously. Comprehensive energy consumption decreases by 59.4% while average annual cost increases by 14.7% by taking photovoltaic accommodation rate and comprehensive energy consumption as targets simultaneously.



Key wordsrenewable energy system      optimization design      near-zero energy residence      hot summer and cold winter zone     
Received: 31 October 2022      Published: 21 April 2023
CLC:  TU 241  
Fund:  “十三五”国家重点研发计划资助项目(2018YFC0704404);浙江大学平衡建筑研究中心科研资助项目(K横20203512-24C)
Corresponding Authors: Yan MING     E-mail: hn_csq@126.com;mmmgmmm@vip.sina.com
Cite this article:

Shu-qin CHEN,Ang YU,Yan MING,De DING,Yi YANG. Design of renewable energy systems for near-zero energy residence in hot summer and cold winter zone. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 795-804.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.04.017     OR     https://www.zjujournals.com/eng/Y2023/V57/I4/795


夏热冬冷地区近零能耗住宅可再生能源设计

针对目前研究中没有对近零能耗住宅光伏系统、光热系统及其储能设备同时进行优化配置,且未考虑光伏板、集热板安装位置问题,以夏热冬冷地区的典型近零能耗住宅建筑为例,提出可再生能源系统的优化设计方法. 分别以年均系统花费、建筑能耗综合值和光伏本地消纳率为目标,利用粒子群优化算法,对光伏板安装位置、装机容量,太阳能集热板安装位置、装机容量及蓄电池容量进行优化配置. 研究结果表明,若分别以年均系统花费最小和建筑能耗综合值最小为最优目标,与传统方案相比年均系统花费和建筑能耗综合值可分别降低15.8%和降低87.7%. 若以年均系统花费最小和建筑能耗综合值最小为目标,则与传统方案相比建筑能耗综合值可以降低65.8%,但是年均系统花费会增加4.3%. 若以光伏本地消纳最大和建筑能耗综合值最小为目标,则与传统方案相比建筑能耗综合值可以降低59.4%,但是年均系统花费会增加14.7%.


关键词: 可再生能源系统,  优化设计,  近零能耗住宅,  夏热冬冷地区 
Fig.1 Energy flow of home energy management system
Fig.2 Optimization design method of renewable energy system based on particle swarm algorithm
Fig.3 Floor plan of typical residence in Hangzhou
参数 数值
Kw/(W·m?2·K?1) 0.15
Kr/(W·m?2·K?1) 0.15
p 0.3
Kwin/(W·m?2·K?1) 1
s 冬季0.4,夏季0.3
Kdw, Kf, Kc/(W·m?2·K?1) 2
A 1
Tab.1 Thermal parameters of building envelope
房间类型 Rper/% Pequ/(W·m?2) Requ/% Plig/(W·m?2) Tlig/h
起居室 19.5 5 39.4 6 180
卧室 35.4 6 19.6 6 180
餐厅 19.5 5 39.4 6 180
厨房 4.2 24 16.7 6 180
洗手间 16.7 0 0 6 180
Tab.2 Setting of personnel, equipments and lighting
Fig.4 Cooling, heating, light, electrical appliances daily energy consumptions and hot water daily load
Fig.5 Charging load of electric vehicles in typical day
Fig.6 Facades location division of typical residence
部位 J/(kW·h·m?2·a?1) Rpv/kW 部位 J/(kW·h·m?2·a?1) Rpv/kW 部位 J/(kW·h·m?2·a?1) Rpv/kW 部位 J/(kW·h·m?2·a?1) Rpv/kW
W-1(1F) 779.24 5.23 S-2(7F) 636.52 0.78 S-6(6F) 617.52 0.78 S-10(5F) 602.84 0.78
W-1(2F) 779.24 5.23 S-3(1F) 261.19 1.90 S-6(7F) 633.41 0.78 S-10(6F) 621.51 0.78
W-1(3F) 779.24 5.23 S-3(2F) 293.06 1.90 S-7(1F) 215.02 1.90 S-10(7F) 635.36 0.78
W-1(4F) 779.24 5.23 S-3(3F) 315.36 1.90 S-7(2F) 262.91 1.90 S-11(1F) 235.13 1.90
W-1(5F) 779.24 5.23 S-3(4F) 326.67 1.90 S-7(3F) 299.05 1.90 S-11(2F) 278.68 1.90
W-1(6F) 779.24 5.23 S-3(5F) 337.40 1.90 S-7(4F) 317.66 1.90 S-11(3F) 311.05 1.90
W-1(7F) 779.24 5.23 S-3(6F) 350.37 1.90 S-7(5F) 330.97 1.90 S-11(4F) 325.61 1.90
E-1(1F) 389.27 5.23 S-3(7F) 384.54 1.90 S-7(6F) 346.66 1.90 S-11(5F) 337.71 1.90
E-1(2F) 389.27 5.23 S-4(1F) 483.26 0.78 S-7(7F) 382.89 1.90 S-11(6F) 350.52 1.90
E-1(3F) 389.27 5.23 S-4(2F) 522.50 0.78 S-8(1F) 416.27 0.78 S-11(7F) 384.81 1.90
E-1(4F) 389.27 5.23 S-4(3F) 568.75 0.78 S-8(2F) 472.61 0.78 S-12(1F) 436.94 0.78
E-1(5F) 389.27 5.23 S-4(4F) 591.46 0.78 S-8(3F) 538.34 0.78 S-12(2F) 484.19 0.78
E-1(6F) 389.27 5.23 S-4(5F) 605.91 0.78 S-8(4F) 581.98 0.78 S-12(3F) 539.70 0.78
E-1(7F) 389.27 5.23 S-4(6F) 621.06 0.78 S-8(5F) 599.94 0.78 S-12(4F) 579.64 0.78
S-1(1F) 505.02 2.92 S-4(7F) 635.14 0.78 S-8(6F) 617.22 0.78 S-12(5F) 608.25 0.78
S-1(2F) 531.56 2.92 S-5(1F) 401.31 5.83 S-8(7F) 633.36 0.78 S-12(6F) 624.36 0.78
S-1(3F) 550.20 2.92 S-5(2F) 449.03 5.83 S-9(1F) 365.94 5.83 S-12(7F) 636.52 0.78
S-1(4F) 561.72 2.92 S-5(3F) 491.96 5.83 S-9(2F) 420.73 5.83 S-13(1F) 395.01 2.92
S-1(5F) 571.64 2.92 S-5(4F) 510.70 5.83 S-9(3F) 476.59 5.83 S-13(2F) 435.63 2.92
S-1(6F) 582.61 2.92 S-5(5F) 527.33 5.83 S-9(4F) 503.54 5.83 S-13(3F) 475.52 2.92
S-1(7F) 598.84 2.92 S-5(6F) 545.30 5.83 S-9(5F) 525.09 5.83 S-13(4F) 496.80 2.92
S-2(1F) 511.21 0.78 S-5(7F) 570.58 5.83 S-9(6F) 545.09 5.83 S-13(5F) 516.28 2.92
S-2(2F) 545.76 0.78 S-6(1F) 423.31 0.78 S-9(7F) 570.67 5.83 S-13(6F) 529.01 2.92
S-2(3F) 581.51 0.78 S-6(2F) 480.10 0.78 S-10(1F) 418.84 0.78 S-13(7F) 549.69 2.92
S-2(4F) 598.16 0.78 S-6(3F) 542.99 0.78 S-10(2F) 471.99 0.78 屋顶 1 059.80 46.4
S-2(5F) 611.35 0.78 S-6(4F) 582.62 0.78 S-10(3F) 534.94 0.78
S-2(6F) 624.43 0.78 S-6(5F) 600.17 0.78 S-10(4F) 577.36 0.78
Tab.3 Annual solar radiation and photovoltaic installable capacity of building facades and rooftop
部件参数 数值 部件参数 数值
光伏发电效率/% 17.67 热泵热水器COP 4.2
光伏运行效率 0.8 热泵主机单价/元 3 300
光伏板单价/(元·W?1 ) 4 蓄热水箱单价/元 1 000
光伏板寿命/a 20 热泵热水器寿命/a 10
蓄电池单价/(元·kW·h?1 ) 1 500 电热水器成本/元 1 500
蓄电池寿命/a 15 电加热器COP 0.95
蓄电池最大SOC 1 电加热器寿命/a 10
蓄电池最小SOC 0.2 光热板单价/元 1 300
电池充放电效率 0.9 每年添加防冻液的成本/元 200
光伏逆变器单价/(元·W?1 ) 0.8 光热系统寿命/a 10
Tab.4 System parameter settings of components
Fig.7 Optimization design results of minimum average annual cost goal
Fig.8 Optimization design results of minimum comprehensive energy consumption goal
Fig.9 Multi-objective optimization design results of average annual cost and comprehensive energy consumption
Fig.10 Average annual cost and comprehensive energy consumption of each scheme
Fig.11 Multi-objective optimization design results of photovoltaic accommodation rate and comprehensive energy consumption
Fig.12 Photovoltaic accommodation rate and comprehensive energy consumption of each scheme
[1]   中华人民共和国中央人民政府. 习近平在第七十五届联合国大会一般辩论上发表重要讲话[EB/OL]. (2020-09-22)[2022-12-15]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm?gov.
[2]   中华人民共和国国家发展和改革委员会. “十四五”循环经济发展规划: 推行分布式能源及光伏储能一体化系统应用[EB/OL]. (2021-07-14)[2022-12-15]. https://www.ndrc.gov.cn/xwdt/ztzl/sswxhjjfzgh/202107/t20210714_1290432.html?code=&state=123.
[3]   ZHOU T, SUN W Optimization of battery supercapacitor hybrid energy storage station in wind/solar generation system[J]. IEEE Transactions on Sustainable Energy, 2014, 5 (2): 408- 415
doi: 10.1109/TSTE.2013.2288804
[4]   GITIZADEH M, FAKHARZADEGAN H Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic syste-ms[J]. Energy, 2013, 65 (1): 665- 674
[5]   NAYAK C K, NAYAK M R, BEHERA R Simple moving average based capacity optimization for VRLA battery in PV power smoothing application using MCTLBO[J]. Journal of Energy Storage, 2018, 17: 20- 28
doi: 10.1016/j.est.2018.02.010
[6]   陈燕哲. 陕西地区地下水源热泵工程应用适应性评价及软件[D]. 西安: 西安建筑科技大学, 2014.
CHEN Yan-zhe. Adaptability evaluation and software of groundwater source heat pump engineering application in Shanxi province [D]. Xi’an: Xi’an University of Architecture and Technology, 2014.
[7]   ERDIL E, ILKAN M, EGELIOGLU F An experimental study on energy generation with a photovoltaic (PV) -solar thermal hybrid system[J]. Energy, 2008, 33 (8): 1241- 1245
doi: 10.1016/j.energy.2008.03.005
[8]   荆亚州. 典型地区典型建筑节能技术适应性分析及评价[D]. 北京: 北京建筑大学, 2013.
JING Ya-zhou. Research and evaluation on suitable typical technology for building energy conservation in representative cities [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2013.
[9]   陈淑琴, 陆敏艳, 谭洪卫, 等 基于多目标优化的办公建筑可再生能源系统集成优化配置方案研究[J]. 太阳能学报, 2018, 39 (11): 3147- 3154
CHEN Shu-qin, LU Min-yan, TAN Hong-wei, et al Research on integration renewable energy systems in office building based on multi-objective optimization[J]. Acta-Energiae Solaris Sinica, 2018, 39 (11): 3147- 3154
[10]   WANG L, GWILLIAM J, JONES P Case study of zero energy house design in UK[J]. Energy and Buildings, 2009, 41: 1215- 1222
doi: 10.1016/j.enbuild.2009.07.001
[11]   MENDES G, FENG W, MICHAEL S, et al Regional analysis of building distributed energy costs and CO2 abatement: a U. S. –China comparison [J]. Energy and Buildings, 2014, 77: 112- 119
doi: 10.1016/j.enbuild.2014.03.047
[12]   ANWAR H, DINCER I Development of power system designs for a net zero energy house[J]. Energy and Buildings, 2014, 73: 120- 129
doi: 10.1016/j.enbuild.2014.01.027
[13]   NOTTROTT A, KLEISLL J, WASHOM B Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems[J]. Renewable energy, 2013, 55: 230- 240
doi: 10.1016/j.renene.2012.12.036
[14]   中华人民共和国住房和城乡建设部. 近零能耗建筑技术标准: GB/T 51350—2019 [S]. 北京: 中国建筑工业出版社, 2019.
[15]   王新镇. 杭州住宅适应性热舒适特征及热环境调节策略研究[D]. 杭州: 浙江大学, 2019.
WANG Xin-zhen. Research on adaptive thermal comfort characteristics and thermal environment adjust strategy of Hangzhou dwelling house [D]. Hangzhou: Zhejiang University, 2019.
[16]   和敬涵, 谢毓毓, 叶豪东, 等 电动汽车充电模式对主动配电网的影响[J]. 电力建设, 2015, 36 (1): 97- 102
HE Jing-han, XIE Yu-yu, YE Hao-dong, et al Influence of electric vehicles charging modes on active network distribution[J]. Electric Power Construction, 2015, 36 (1): 97- 102
doi: 10.3969/j.issn.1000-7229.2015.01.015
[17]   艾克 面向碳达峰、碳中和目标的汽车产业实施路线图[J]. 汽车与配件, 2021, (22): 36- 39
AI Ke A road map for the automobile industry to reach the goal of carbon emissions peak and carbon neutrality[J]. Automobile and Parts, 2021, (22): 36- 39
doi: 10.3969/j.issn.1006-0162.2021.22.006
[18]   李天宁, 王浩国, 董灵鹏, 等 考虑居民小区充电负荷与成本的电动汽车有序充电策略[J]. 浙江电力, 2022, 41 (5): 8- 13
LI Tian-ning, WANG Hao-guo, DONG Ling-peng, et al Research on coordinated charging strategy considering load and cost of electric vehicles in a residential quarter[J]. Zhejiang Electric Power, 2022, 41 (5): 8- 13
[19]   田立亭, 史双龙, 贾卓 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34 (11): 126- 130
TIAN Li-ting, SHI Shuang-long, JIA Zhuo A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34 (11): 126- 130
[20]   张华. 城市建筑屋顶光伏利用潜力评估研究[D]. 天津: 天津大学, 2017.
ZHANG Hua. Research on PV energy potential of rooftop in urban area [D]. Tianjin: Tianjin University, 2017.
[1] Ting-wei JI,Shao-chang MO,Fang-fang XIE,Xin-shuai ZHANG,Yi-yang JIANG,Yao ZHENG. Integrated aerodynamic optimization of wing/nacelle based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 632-642.
[2] Jian LI,Chu-yan DAI,Yang-wei WANG,Yan-ling GUO,Fu-sheng ZHA. Design and optimization of single-finger soft grasp based on strawberry curve[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1088-1096, 1134.
[3] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[4] Kai HUANG,Zhi-jian SUN,Wen-ying QIAN,Ji-hu YANG,Zi-tao YU,Ya-cai HU. Dimensionless material cost model of media gas-gas heat exchangers[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1362-1368.
[5] Bo-ping YU,Gao-hua LI,Liang XIE,Fu-xin WANG. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 833-842.
[6] Jiang LU,Deng-hui WANG,Kang ZHAO,Shi-yun LIU. Experimental performance of intermittent space heating with different terminals in a self-thermal insulation building[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2092-2099.
[7] Jian GE,Deng-hui WANG,Kang ZHAO. Influencing factors on infiltration rate of heating rooms in hot summer and cold winter zone[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1415-1422.
[8] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[9] SONG Wei, JIANG Hong-jian, WANG Tao, GAO Zhen-fei, DU Zhen-tao, ZHU Shi-qiang. Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1837-1844.
[10] ZHANG Xuan-wu, ZHENG Yao, YANG Bo-wei, ZHANG Ji-fa. Aerodynamic optimization design of airfoil configurations based on cascade feedforward neural network[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1405-1411.
[11] FU Xin, QIAN Xiao-qian, QIAN Kuang-liang, DONG Kai, RUAN Fang. Method of defining heating and cooling period for residential buildings in hot summer and cold winter zone[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 729-738.
[12] DONG Kai, LAI Jun ying, QIAN Xiao qian, ZHAN Shu lin, RUAN Fang. Energy efficiency of residential buildings with horizontal external shading in hot summer and cold winter zone[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1431-1437.
[13] RUAN Fang, QIAN Xiao qian, QIAN Kuang liang,YU Ya chao,SHI Shui hua. Anti-insulation behavior for exterior wall external insulation on residential buildings in hot summer and cold winter zone[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2343-2349.
[14] HU You rui, LIU Yan, WANG Yang, LIU Jian zhong, ZHOU Jun hu, HU Wei, LI Hong wei. Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2403-2409.
[15] ZHU Jun-liang, HAO Zhi-yong, ZHENG Kang. Analysis and optimization design on piston secondary motion of gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 334-341.