A new optimization design method based on Gaussian process regression (GPR) model was proposed to resolve the high-dimensional nonlinear optimization problem of integrated aerodynamic design of wing/nacelle. The geometric parametric modeling of the airfoils in the integrated configuration of wing/nacelle was realized by the class and shape transformation (CST) method. The deformation of the integrated configuration of wing/nacelle was achieved by controlling the wing shape parameters, the nacelle shape parameters and the nacelle installation parameters. The parametric modeling process included 50 design parameters in total. The GPR model was used to construct a surrogate model between the design parameters and the aerodynamics performance of the integrated wing/nacelle geometry. Bayesian optimization (BO) algorithm was used to realize the self-update of the surrogate model and the acquisition of the optimal aerodynamic shape. Results showed that the drag coefficient of the integrated configuration was reduced by 10.95% after the optimization. The flow field analysis shows that the optimization of the wing shape and the nacelle shape improves the surface flow field structure, and the optimization of the nacelle’s installation position reduces the aerodynamic interference between wing and nacelle.
Ting-wei JI,Shao-chang MO,Fang-fang XIE,Xin-shuai ZHANG,Yi-yang JIANG,Yao ZHENG. Integrated aerodynamic optimization of wing/nacelle based on Gaussian process regression. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 632-642.
Tab.2Design scope of intuitive parameters of nacelle profile and installation position of nacelle
Fig.10Optimization framework of machine learning architecture based on Gaussian process regression
Fig.11Convergence histories of optimizing wing-body-nacelle-pylon configuration
构型
Cd
机翼
机身
短舱
挂架
初始构型
209.1
100.2
55.7
4.0
优化构型
196.6
91.8
34.5
5.7
Tab.3Change in drag coefficient of each component before and after optimization
构型
$ {d_{{\text{s1}}}} $
$ {d_{{\text{s2}}}} $
$ S $
$ {C_{\text{l}}} $
$ {C_{\text{d}}} $
$ {C_{{\text{d,p}}}} $
$ {C_{{\text{d,f}}}} $
初始构型
0.150 640
0.121 876
0.072 700
0.492 397
0.036 898
0.022 295
0.014 434
优化构型
0.154 776
0.124 436
0.077 607
0.492 451 (+0.01%)
0.032 859 (?10.95%)
0.018 898 (?15.24%)
0.013 961 (?3.28%)
Tab.4Comparison of aerodynamic performance and structural parameters of wing-body-nacelle-pylon configuration before and after optimization
Fig.12Comparison of profiles of nacelle before and after optimization
Fig.13Comparison of airfoil sections before and after optimization
Fig.14Comparison of pressure coefficient of upper wing surface
Fig.15Comparison of pressure coefficient of wing before and after optimization
Fig.16Mach number distribution at 37.1% span station of wing
Fig.17Comparison of pressure coefficient of nacelle at different section
[1]
张宇飞, 陈海昕, 符松, 等 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33 (11): 1993- 2001 ZHANG Yu-fei, CHEN Hai-xin, FU Song, et al A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 (11): 1993- 2001
[2]
白俊强, 徐家宽, 黄江涛, 等 多区域自由变形技术在短舱安装位置减阻设计中的应用研究[J]. 空气动力学学报, 2014, 32 (5): 682- 687 BAI Jun-qiang, XU Jia-kuan, HUANG Jiang-tao, et al Drag reduction design of install position of nacelle based on multi-zone FFD technology[J]. Acta Aerodynamica Sinica, 2014, 32 (5): 682- 687
[3]
邱亚松, 白俊强, 黄琳, 等 翼吊发动机短舱对三维增升装置的影响及改善措施研究[J]. 空气动力学学报, 2012, 30 (1): 7- 13 QIU Ya-song S, BAI Jun-qiang, HUANG Lin, et al Study about influence of wing-mounted engine nacelle on high-lift system and improvement measures[J]. Acta Aerodynamica Sinica, 2012, 30 (1): 7- 13
[4]
TEJERO F, ROBINSON M, MACMANUS D G, et al Multi-objective optimisation of short nacelles for high bypass ratio engines[J]. Aerospace Science and Technology, 2019, 91: 410- 421
doi: 10.1016/j.ast.2019.02.014
[5]
TEJERO F, GOULOS I, MACMANUS D G, et al. Effects of aircraft integration on compact nacelle aerodynamics [C]// AIAA Scitech 2020 Forum. Orlando: AIAA, 2020: 2020-2225 .
[6]
张冬云, 张美红, 王美黎, 等 翼吊布局民机短舱位置气动影响[J]. 空气动力学学报, 2017, 35 (6): 781- 786 ZHANG Dong-yin, ZHANG Mei-hong, WANG Mei-li, et al Aero-dynamic influence of nacelle position of a wing-mounted civil aircraft[J]. Acta Aerodynamica Sinica, 2017, 35 (6): 781- 786
[7]
KOC S, KIM H J, NAKAHASHI K. Aerodynamic design of wing-body-nacelle-pylon configuration [C]// 17th AIAA Computational Fluid Dynamics Conference. Toronto: AIAA, 2005: 2005-4856.
[8]
SAITOH T, KIM H J, TAKENAKA K, et al. Multi-Point design of wing-body-nacelle-pylon configuration [C]// 24th Applied Aerodynamics Conference. San Francisco: AIAA, 2006: 3461.
[9]
EPSTEIN B, PEIGIN S Automatic optimization of wing–body–under-the-wing-mounted-nacelle configurations[J]. Journal of Aircraft, 2016, 53 (3): 691- 700
doi: 10.2514/1.C033641
[10]
BONS N P, MADER C A, MARTINS J R R A, et al. High-fidelity aerodynamic shape optimization of a full configuration regional jet [C]// AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2018: 106.
[11]
LI J, GAO Z H, HUANG J T, et al Aerodynamic design optimization of nacelle/pylon position on an aircraft[J]. Chinese Journal of Aeronautics, 2013, 26 (4): 850- 857
doi: 10.1016/j.cja.2013.04.052
[12]
LEI R W, BAI J Q, XU D Y Aerodynamic optimization of civil aircraft with wing-mounted engine jet based on adjoint method[J]. Aerospace Science and Technology, 2019, 93: 105285
doi: 10.1016/j.ast.2019.07.018
[13]
王景. 基于Stackelberg博弈与连续伴随方法的气动外形优化设计 [D]. 杭州: 浙江大学, 2018. WANG Jing. Aerodynamic shape optimization by Stackelberg game coupled with the continuous adjoint method [D]. Hangzhou: Zhejiang University, 2018.
[14]
张玄武, 郑耀, 杨波威, 等 基于级联前向网络的翼型优化设计[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1405- 1411 ZHANG Xuan-wu, ZHENG Yao, YANG Bo-wei, et al Aerodynamic optimization design of airfoil configurations based on cascade feedforward neural network[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1405- 1411
[15]
HOOKER J R, WICK A, ZEUNE C, et al. Over wing nacelle installations for improved energy efficiency [C]// 31st AIAA Applied Aerodynamics Conference. San Diego: AIAA, 2013: 2013-2920.
[16]
REDEKER G. A selection of experimental test cases for the validation of cfd codes [R]. [S.l.]: AGARD, 1994.
[17]
STRAATHOF M H, VAN TOOREN M J L Extension to the class-shape-transformation method based on B-splines[J]. AIAA Journal, 2011, 49 (4): 780- 790
doi: 10.2514/1.J050706
[18]
ZHU F, QIN N Intuitive class/shape function parameterization for airfoils[J]. AIAA Journal, 2014, 52 (1): 17- 25
doi: 10.2514/1.J052610
[19]
SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C]// 30th Aerospace Sciences Meeting and Exhibit. [S.l.]: AIAA, 1992: 1992-0439.
[20]
HIROSE N, ASAI K, IKAWA K, et al Euler flow analysis of turbine powered simulator and fanjet engine[J]. Journal of Propulsion and Power, 1991, 7 (6): 1015- 1022
doi: 10.2514/3.23421
[21]
LI J, LI F W, QIN E Numerical simulation of transonic flow over wing-mounted twin-engine transport aircraft[J]. Journal of Aircraft, 2000, 37 (3): 469- 478
doi: 10.2514/2.2621
[22]
刘凯礼, 姬昌睿, 谭兆光, 等 大涵道比涡扇发动机TPS短舱低速气动特性分析[J]. 推进技术, 2015, 36 (2): 186- 193 LIU Kai-li, JI Chang-rui, TAN Zhao-guang, et al Numerical study on low speed aerodynamic performance of large bypass ratio engine TPS nacelle[J]. Journal of Propulsion Technology, 2015, 36 (2): 186- 193
doi: 10.13675/j.cnki.tjjs.2015.02.004