Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 583-590    DOI: 10.3785/j.issn.1008-973X.2023.03.016
    
Multi-index evaluation process of seismic resilience of substation main wiring system
Xiao-hang LIU1,2(),Shan-suo ZHENG1,2,*(),Shu-qing DONG3,Feng YANG4,Jin-qi DONG1,2,Xiao-yu ZHANG1,2
1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
3. Shaanxi Electric Power Design Institute Limited Company, Xi’an 710055, China
4. China Qiyuan Engineering Corporation, Xi’an 710055, China
Download: HTML     PDF(1229KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To quantitatively evaluated the seismic resilience of the substation main wiring system and fully considered the uncertainty of the substation’s seismic response and repair process, a multi-index evaluation process of the seismic resilience of the substation system was proposed to comprehensively evaluate the ability of the substation system to resist earthquake risks and recover its functions after earthquakes. The concept of unit importance was introduced to solve the optimal recovery scheme for different functional states of the system. Based on the time step advancement method, the real-time repair process of the substation system under the simulated damage condition was obtained, and the performance recovery curve of the main wiring system was obtained. The corresponding seismic resilience indexes such as power supply demand, redundancy rate, post-earthquake performance and repair rate were calculated. Taking a typical 6 incoming and 10 outgoing 220/110/10 kV substation as an example, the quantitative evaluation of seismic resilience was carried out. Results showed that the optimal recovery scheme based on the concept of functional unit importance could effectively reduce the time for the system to reach the maximum functional state in the recovery phase.



Key wordsquasi-Monte Carlo simulation      substation main wiring system      performance recovery curve      seismic resilience index      uncertainty     
Received: 23 February 2022      Published: 31 March 2023
CLC:  P 315.9  
Fund:  国家重点研发计划资助项目(2019YFC1509302);陕西省重点研发计划资助项目(2021ZDLSF06-10)
Corresponding Authors: Shan-suo ZHENG     E-mail: liuxiaohang95@outlook.com;zhengshansuo@263.net
Cite this article:

Xiao-hang LIU,Shan-suo ZHENG,Shu-qing DONG,Feng YANG,Jin-qi DONG,Xiao-yu ZHANG. Multi-index evaluation process of seismic resilience of substation main wiring system. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 583-590.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.016     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/583


变电站主接线系统抗震韧性多指标评估流程

为了量化评估变电站主接线系统的抗震韧性,充分考虑变电站的地震响应及修复过程的不确定性,提出变电站系统抗震韧性多指标评估流程,全面评估变电站系统抵御地震风险和震后功能恢复的能力. 引入单元重要度概念,求解系统不同功能状态的最优恢复方案,基于时间步长推进方法,获得变电站系统在模拟破坏工况下的实时修复进程,得到主接线系统性能恢复曲线,计算对应的供电需求、冗余率、震后性能及修复速率等抗震韧性指标. 以典型6进线10出线220/110/10 kV变电站作为实例进行抗震韧性定量评估,结果表明基于功能单元重要度概念的最优恢复方案能够有效减少系统恢复阶段达到最大功能状态所用时间.


关键词: 拟蒙特卡洛模拟,  变电站主接线系统,  性能恢复曲线,  抗震韧性指标,  不确定性 
功能单元 n
SF DS CT CB PT LA IS TR BUS
进线单元 2 1 1 1 1 0 0 0 0
出线单元 1 1 1 1 1 0 0 0 0
连接1单元 0 1 0 0 0 0 0 0 0
连接2单元 0 1 0 0 0 0 1 0 0
母联单元 2 2 1 1 0 0 1 0 0
220 kV母线 0 0 0 0 1 1 16 0 1
110 kV母线 0 0 0 0 1 1 10 0 1
变压器 3 2 2 2 0 2 0 1 0
Tab.1 Basis for division of functional units
Fig.1 Schematic diagram of functional recovery of substation system in single simulation
Fig.2 Evaluation process of seismic resilience of substation system
Fig.3 Facility layout of typical 220 kV substation
Fig.4 Seismic fragility curves of power supply facilities based on empirical statistics of earthquake damage
Fig.5 Logic diagram of substation system based on functional unit
Fig.6 Logic diagram of substation system simplified based on edge weight model
功能单元 $ \overline {{T }}$/d $ {\sigma ^2} $ 功能单元 $ \overline {{T }}$/d $ {\sigma ^2} $
进线单元 4 1.5 连接单元 1 0.5
出线单元 3 1.0 母联单元 2 1.0
变压器单元 3 2.0 管母线单元 1 1.0
Tab.2 Values of normal distribution parameters for repair time of each functional unit
Fig.7 Corresponding recovery curve of different remaining functionality of substation system (500 simulations)
PGA/g $\overline { {T } }_{\rm{C}} $/d $\overline { {T } }_{\rm{R}} $/d $\overline { {T } }_{\rm{F}} $/d ENS
0.20 13.8239 4.067 0 9.756 9 2.326 2
0.25 24.4711 6.149 1 18.322 0 8.637 9
0.30 35.905 1 7.215 0 28.690 1 16.241 7
0.35 49.058 2 9.286 9 39.771 3 22.210 8
Tab.3 Evaluation results of seismic resilience (500 simulations)
Fs NIO
PGA=0.20g PGA=0.25g PGA=0.30g PGA=0.35g
0 20 100 236 403
1/10 0 0 0 0
2/10 5 24 44 41
3/10 0 0 0 1
4/10 16 66 93 44
5/10 119 149 93 9
6/10 53 61 22 2
7/10 8 12 4 0
8/10 111 67 4 0
9/10 77 12 3 0
1 91 9 1 0
Tab.4 Number of simulated occurrences of each initial function of substation system (500 simulations)
Fig.8 Calculation of expected value of seismic resilience index of main wiring system of substation under different set earthquakes
[1]   张中近, 刘如山, 姜立新 基于损失统计的变电站地震经济损失评估方法[J]. 自然灾害学报, 2016, 25 (4): 93- 100
ZHANG Zhong-jin, LIU Ru-shan, JIANG Li-xin Assessment method of seismic economic loss in substation based on loss statistics[J]. Journal of Natural Disasters, 2016, 25 (4): 93- 100
[2]   黄家辉, 冯冬芹 广义收益信息物理系统脆弱性评估方法[J]. 浙江大学学报: 工学版, 2016, 50 (6): 1119- 1125
HUANG Jia-hui, FENG Dong-qin Method for vulnerability evaluation of Cyber-physical system based on generalized profit[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (6): 1119- 1125
[3]   陆新征, 曾翔, 许镇, 等 建设地震韧性城市所面临的挑战[J]. 城市与减灾, 2017, (4): 29- 34
LU Xin-zheng, ZENG Xiang, XU Zhen, et al Challenges in building seismically resilient cities[J]. City and Disaster Reduction, 2017, (4): 29- 34
doi: 10.3969/j.issn.1671-0495.2017.04.007
[4]   翟长海, 刘文, 谢礼立 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39 (9): 1- 9
ZHAI Chang-hai, LIU Wen, XIE Li-li Progress of research on city seismic resilience evaluation[J]. Journal of Building Structures, 2018, 39 (9): 1- 9
[5]   BRUNEAU M, CHANG S E, EGUCHI R T, et al A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19 (4): 733- 752
doi: 10.1193/1.1623497
[6]   VUGRIN E D, BACA M J, STAMBER K L, et al Evaluating the effect of resource constraints on resilience of bulk power system with an electric power restoration model[J]. International Journal of System of Systems Engineering, 2014, 5 (1): 68- 91
doi: 10.1504/IJSSE.2014.060883
[7]   LI S , MAX D, ERIC D, et al. Probabilistic demand and supply resilience model for electric power supply system under seismic hazard [C]// 12th International Conference on Applications of Statistics and Probability in Civil Engineering. Vancouver: [s. n.], 2015: 1-8.
[8]   ROMERO N, NOZICK L K, DOBSON I, et al Seismic retrofit for electric power systems[J]. Earthquake Spectra, 2015, 31 (2): 1157- 1176
doi: 10.1193/052112EQS193M
[9]   DEHGHANPOUR K, NEHRIR H Real-time multiobjective microgrid power management using distributed optimization in an agent-based bargaining framework[J]. IEEE Transactions on Smart Grid, 2018, 9 (6): 6318- 6327
doi: 10.1109/TSG.2017.2708686
[10]   HWANG H H M, CHOU T Evaluation of seismic performance of an electric substation using event tree/fault tree technique[J]. Probabilistic Engineering Mechanics, 1998, 13 (2): 117- 124
doi: 10.1016/S0266-8920(97)00018-0
[11]   李天, 李杰, 沈祖炎 高压变电站抗震可靠性分析(一)[J]. 地震工程与工程振动, 2000, 20 (3): 43- 49
LI Tian, LI Jie, SHEN Zu-yan Seismic reliability analysis of high voltage substation (Part 1)[J]. Earthquake Engineering and Engineering Vibration, 2000, 20 (3): 43- 49
doi: 10.3969/j.issn.1000-1301.2000.03.007
[12]   LI J, WANG T, SHANG Q Probability-based seismic reliability assessment method for substation systems[J]. Earthquake Engineering Structural Dynamics, 2019, 48 (3): 328- 346
doi: 10.1002/eqe.3138
[13]   郑山锁, 汪靖, 贺金川, 等 变电站主接线系统地震易损性分析[J]. 华中科技大学学报: 自然科学版, 2020, 48 (3): 98- 103
ZHENG Shan-suo, WANG Jing, HE Jin-chuan, et al Seismic vulnerability analysis of substation system[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (3): 98- 103
[14]   刘晓航, 贺金川, 郑山锁, 等 生命线: 电力系统对供水系统抗震可靠性影响模型[J]. 天津大学学报: 自然科学与工程技术版, 2021, 54 (5): 468- 478
LIU Xiao-hang, HE Jin-chuan, ZHENG Shan-suo, et al Lifeline: model the impact of power system on seismic reliability of water supply systems[J]. Journal of Tianjin University: Science and Technology, 2021, 54 (5): 468- 478
[15]   HESS P The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal[J]. Journal of Applied Physics, 2012, 111: 051101
[16]   张兴友, 王守相 配电系统与通信相关的风险评估[J]. 浙江大学学报:工学版, 2014, 48 (4): 568- 574
ZHANG Xing-you, WANG Shou-xiang Risk assessment of distribution power systems considering communication systems[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 568- 574
[17]   LIU X H, ZHENG S S, WU X X, et al Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method[J]. Reliability Engineering and System Safety, 2021, 215: 107888
doi: 10.1016/j.ress.2021.107888
[18]   KANG W H, LEE Y J, SONG J, et al Further development of matrix-based system reliability method and applications to structural systems[J]. Structure and Infrastructure Engineering, 2012, 8 (5): 441- 457
doi: 10.1080/15732479.2010.539060
[19]   梁海平, 石皓岩, 王铁强, 等. 考虑韧性提升的输电网灾前预防检修多目标多阶段优化[EB/OL]. (2021-02-24)[2021-08-02]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210223.1649.004.html.
LIANG Hai-ping, SHI Hao-yan, WANG Tie-qiang, et al. Multi-objective and multi-stage optimization of pre-disaster preventive maintenance of transmission network considering resilience improvement [EB/OL]. (2021-02-24)[ 2021-08-02]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210223.1649.004.html.
[20]   龙立, 郑山锁, 周炎, 等 基于拟蒙特卡罗方法的供水管网抗震可靠性分析并行化研究[J]. 浙江大学学报: 工学版, 2020, 54 (2): 241- 247
LONG Li, ZHENG Shan-suo, ZHOU Yan, et al. Parallel study of seismic reliability analysis of water supply pipe network based on quasi-Monte Carlo method[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 241- 247
[21]   刘振亚. 国家电网公司输变电工程通用设计(110(66)~750 kV变电站分册)[M]. 北京: 中国电力出版社, 2010.
[22]   李吉超. 基于概率的变电站系统抗震性能评估方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2018.
LI Ji-chao. Study on probability-based seismic performance assessment method for substation system [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2018.
[1] Xiao-hang LIU,Shan-suo ZHENG,Yu HUANG,Shu-qing DONG,Feng YANG,Jin-qi DONG. Seismic reliability analysis of substation system based on adjacency matrix[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1495-1503.
[2] Ke-wen ZHANG,Bai-song PAN. Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 833-842.
[3] Ying LI,Guan-xiong WANG,Wei YAN,Ying-ge ZHAO,Chong-lei MA. Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 613-621.
[4] Fei HE,Cang-hong JIN,Ming-hui WU. Uncertain behavior sequence prediction method based on intent identification[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 254-262.
[5] Ai-min ZHOU,Hong-bin LIU,Shu-tao ZHANG,Jin-yan OUYANG. Uncertainty reasoning model of subjective and objective aesthetic evaluation of car[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 419-429.
[6] Hong-hui WANG,Xin FANG,De-jiang LI,Gui-jie LIU. Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 280-288.
[7] Chao SUN,Meng-hui LI,Fei HAN. Traffic evolution model with multi-source data of intelligent highway[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 546-556.
[8] Xin-yu YANG,Ye-fa HU. Maintenance, repair and overhaul/operations service resource scheduling optimization for complex products in uncertain environment[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 852-861.
[9] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[10] ZHAO Chuan-song, REN Hong-ge, SHI Tao, LI Fu-jin. Wheeled inverted pendulum reactive cognitive system with internal motivation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1073-1080.
[11] WANG Yue, SU Hong ye, SHAO Han shan, LU Shan, XIE Lei. Integration of production planning and scheduling under demand and utility uncertainties[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 57-67.
[12] JIN Zhang-jun, LI Jiang-xiong, YU Ci-jun, KE Ying-lin. Registration error analysis and evaluation in large-volume metrology system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 655-661.
[13] YAO Xiao-wen, JIANG Jian-qun, LIU Guo-hua. Deformation-based seismic fragility analysis of concrete arch dams[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1839-1845.
[14] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1572-1579.
[15] ZHANG Qing-qing, XU Yue-ping, ZHANG Xu-jie, XU Xiao. Uncertainty analysis of water quality modeling and
risk-based decision-making based on DRAM
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2231-2236.