Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1175-1180    DOI: 10.3785/j.issn.1008-973X.2022.06.015
    
Predefined-time control of continuum space manipulator based on fuzzy compensation
Meng DING(),Xiu-tao GU,Xian-jie ZHENG,Yu GUO*()
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Download: HTML     PDF(1183KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

For the multi-segment cable-driven continuum space manipulator system, a predefined-time attitude control method based on fuzzy compensation was proposed, considering the external time-varying disturbances and parameter uncertainties. A fuzzy estimator was designed to estimate the system switching gain and compensate the unknown bounded total disturbance. Based on the theory of predefined time stability, a sliding mode-based predefined-time control method was presented to make the manipulator system reach the stable state within a predefined time. Compared with the control method based on the finite-time theory, the settling time of the proposed control method was independent of the initial state of the system and was preset according to the actual system requirements. Furthermore, the proposed method had better control performance in terms of convergence rate and accuracy. Based on Lyapunov stability theory, the stability of the closed-loop system was proved. Simulation results show that the proposed control method can make the system attitude angle error converge fast and the predefined time stable.



Key wordscable-driven      continuum manipulator      space manipulator      predefined-time control      fuzzy control     
Received: 15 March 2022      Published: 30 June 2022
CLC:  TP 241  
Fund:  国家自然科学基金资助项目(61973167);中国航天科技集团公司第八研究院产学研合作基金资助项目(SAST2020?062);江苏高校优势学科建设工程资助项目;江苏省研究生科研与实践创新计划项目(KYCX22_0455)
Corresponding Authors: Yu GUO     E-mail: 824355614@qq.com;guoyu@njust.edu.cn
Cite this article:

Meng DING,Xiu-tao GU,Xian-jie ZHENG,Yu GUO. Predefined-time control of continuum space manipulator based on fuzzy compensation. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1175-1180.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.015     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1175


基于模糊补偿的连续型空间机械臂预定时间控制

针对多节线驱连续型空间机械臂系统,在考虑存在外界时变干扰与参数不确定的情况下,提出基于模糊补偿的预定时间姿态控制方法. 设计模糊估计器估计系统切换增益,补偿未知有界总干扰. 基于预定时间稳定性理论,结合滑模控制,提出预定时间控制方法,使机械臂系统在预先设定时间内到达稳定状态. 与基于有限时间理论的控制方法相比,所提基于预定时间控制方法的稳定时间与系统初始状态无关,可以根据实际系统需求预先设置,并且所提方法在系统收敛速度与精度上具有更优的控制性能. 基于Lyapunov稳定性理论证明闭环系统的稳定性. 仿真结果表明,所提控制方法使系统姿态角误差快速收敛,并且预定时间稳定.


关键词: 线缆驱动,  连续型机械臂,  空间机械臂,  预定时间控制,  模糊控制 
Fig.1 Schematic diagram of two-section cable-driven continuum manipulator
Fig.2 Section n geometric model of manipulator
Fig.3 Attitude response curves of section 1 manipulator under different control strategies
Fig.4 Attitude response curves of section 2 manipulator under different control strategies
Fig.5 Attitude error curves of section 1 manipulator under different control strategies
Fig.6 Attitude error curves of section 2 manipulator under different control strategies
Fig.7 Estimation curve of unknow disturbance upper bound
[1]   MOGHADDAM B M, CHHABRA R On the guidance, navigation and control of in-orbit space robotic missions: a survey and prospective vision[J]. Acta Astronautica, 2021, 184: 70- 100
doi: 10.1016/j.actaastro.2021.03.029
[2]   OUYANG X, MENG D, WANG X, et al Hybrid rigid-continuum dual-arm space robots: modeling, coupling analysis, and coordinated motion planning[J]. Aerospace Science and Technology, 2021, 116: 106861
doi: 10.1016/j.ast.2021.106861
[3]   PALMER D, AXINTE D Active uncoiling and feeding of a continuum arm robot[J]. Robotics and Computer Integrated Manufacturing, 2019, 56: 107- 116
doi: 10.1016/j.rcim.2018.09.003
[4]   TONAPI M M, GODAGE I S, WALKER I D. Next generation rope-like robot for in-space inspection [C]// 2014 IEEE Aerospace Conference. Big Sky: IEEE, 2014: 1-13.
[5]   JIANG D, CAI Z, PENG H, et al Coordinated control based on reinforcement learning for dual-arm continuum manipulators in space capture missions[J]. Journal of Aerospace Engineering, 2021, 34 (6): 4021087
doi: 10.1061/(ASCE)AS.1943-5525.0001335
[6]   IVANESCU M, POPESCU D, POPESCU N A decoupled sliding mode control for a continuum arm[J]. Advanced Robotics, 2015, 29 (13): 831- 845
doi: 10.1080/01691864.2015.1035323
[7]   ALQUMSAN A A, KHOO S, NORTON M Robust control of continuum robots using Cosserat rod theory[J]. Mechanism and Machine Theory, 2019, 131: 48- 61
doi: 10.1016/j.mechmachtheory.2018.09.011
[8]   ALQUMSAN A A, KHOO S, NORTON M Multi-surface sliding mode control of continuum robots with mismatched uncertainties[J]. Meccanica, 2019, 54: 2307- 2316
doi: 10.1007/s11012-019-01072-6
[9]   QI P, LIU C, ATAKA A, et al Kinematic control of continuum manipulators using a fuzzy model-based approach[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (8): 5022- 5035
doi: 10.1109/TIE.2016.2554078
[10]   PILTAN F, KIM C H, KIM J Adaptive fuzzy-based fault-tolerant control of a continuum robotic system for maxillary sinus surgery[J]. Applied Sciences, 2019, 9 (12): 2490
doi: 10.3390/app9122490
[11]   ZHONG C, GUO Y, YU Z, et al Finite-time attitude control for flexible spacecraft with unknown bounded disturbance[J]. Transactions of the Institute of Measurement and Control, 2016, 38 (2): 240- 249
doi: 10.1177/0142331214566223
[12]   JIANG B, HU Q, FRISWELL M I Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24 (5): 1892- 1898
doi: 10.1109/TCST.2016.2519838
[13]   SÁNCHEZ-TORRES J D, DEFOORT M, MUÑOZ-VÁZQUEZ A J. A second order sliding mode controller with predefined-time convergence [C]// 15th International Conference on Electrical Engineering, Computing Science and Automatic Control. Mexico City: IEEE, 2018: 1-4.
[14]   WANG F, MIAO Y, LI C, et al Attitude control of rigid spacecraft with predefined-time stability[J]. Journal of the Franklin Institute, 2020, 357 (7): 4212- 4221
doi: 10.1016/j.jfranklin.2020.01.001
[15]   SÁNCHEZ-TORRES J D, GÓMEZ-GUTIÉRREZ D, LÓPEZ E, et al A class of predefined-time stable dynamical systems[J]. IMA Journal of Mathematical Control and Information, 2018, 35: i1- i29
doi: 10.1093/imamci/dnx004
[16]   王坚强 模糊多准则决策方法研究综述[J]. 控制与决策, 2008, 6 (23): 601- 606
WANG Jian-qiang Overview on fuzzy multi-criteria decision-making approach[J]. Control and Decision, 2008, 6 (23): 601- 606
[1] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[2] XIE Xian-yi, JIN Li-sheng, GAO Lin-lin, XIA Hai-peng. Study on rear wheel active steering control based on variable weight coefficient of LQR[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 446-452.
[3] LI Ming da,KUI Hai lin,MEN Yu zhuo,BAO Cui zhu. Starting control of platooning trucks based on actual gearshift schedule[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 887-892.
[4] ZHU Shao peng, LIN Ding, XIE Bo zhen, YU Xiao li, HAN Song. Driving force hierarchical control strategy of electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2094-2099.
[5] HU Jian, WU Gong ping, WANG Wei, YANG Shou dong,LIU Ming, YANG Zhi yong, HE Yuan, GUO Lei. Speed control method of unpowered downhill for high voltage transmission line inspection robot[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1878-1884.
[6] ZHU Ya-guang, JIN Bo, LI Wei. Leg compliance control of hexapod robot based on adaptive-fuzzy control[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1419-1426.
[7] TANG Fang, ZHOU Xiao-jun, WEI Yan-ding. Changeable steering ratio feedback method to improve human-vehicle comprehensive performance[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 456-462.
[8] CHEN Wei-hai, CHEN Quan-zhu, LIU Rong, ZHANG Jian-bing, CUI Xiang. Homing algorithm analysis of a cable-driven
humanoid-arm manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 345-352.
[9] WANG Shuo, YING Ji, CHEN Zi-chen, FENG Yu. A new fuzzy self-tuning method for controlling packing pressure of a high-accuracy injection molding machine[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1370-1375.
[10] GUAN Cheng, PENG Hua. Fuzzy control of injection pressure of injection molding machines based on a nonlinear function[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1382-1386.