Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2115-2124    DOI: 10.3785/j.issn.1008-973X.2021.11.012
    
Factors affecting discharge performance of high-temperature coal pyrolysis gas
Yi-fei ZHAO(),Meng-xiang FANG*(),Yong-min SHI,Zhi-xiang XIA,Jian-meng CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1521KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A laboratory high-temperature discharge system was used to study factors affecting discharge performance of high-temperature coal pyrolysis gas for improving the dust remove efficiency and stability of high-temperature coal pyrolysis gas dust removal, focusing on the influence of temperature, atmosphere, conditioning optimization and power supply polarity on the discharge characteristics of pyrolysis gas. Results show that, increasing the temperature, the discharge current of the pyrolysis gas increases, and the corona and breakdown voltage decrease, which is not conducive to particle removal. For high-temperature pyrolysis gas, reducing the volume fraction of CH4 and increasing the volume fraction of H2 and CO2 reduce the discharge current, increase the corona and breakdown voltage, which is more conducive to particle removal. With adding water vapor, the corona initiation voltage increases, the discharge current obviously decreases, the corona discharge interval is wider, and the V-I characteristic curve shifts to the right, which has a more obvious optimization effect on the discharge performance. Applying voltage via positive polarity power supply at high temperature, the standard gas and the pyrolysis gas after tempering with water vapor have higher breakdown voltage and positive corona discharge area, and the performance is better than that of the negative polarity power supply.



Key wordshigh-temperature pyrolysis gas      discharge      atmosphere      water vapor      power supply polarity     
Received: 17 December 2020      Published: 05 November 2021
CLC:  TK 01  
Fund:  国家重点研发计划资助项目(2018YFB0605000)
Corresponding Authors: Meng-xiang FANG     E-mail: 21827010@zju.edu.cn;mxfang@zju.edu.cn
Cite this article:

Yi-fei ZHAO,Meng-xiang FANG,Yong-min SHI,Zhi-xiang XIA,Jian-meng CEN. Factors affecting discharge performance of high-temperature coal pyrolysis gas. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2115-2124.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.012     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2115


高温热解煤气放电性能的影响因素

为了提高电除尘器净化高温热解煤气时的除尘效率及稳定性,采用实验室高温放电系统研究电除尘器中温度、气氛、气体调质以及电源极性等因素对热解煤气放电性能的影响. 研究结果表明:提高温度,热解煤气的放电电流上升,起晕电压、击穿电压下降,不利于颗粒脱除. 对于高温热解煤气,降低CH4的体积分数、提高H2、CO2的体积分数,使放电电流减小,起晕电压和击穿电压升高,更利于颗粒脱除. 添加水蒸气,起晕电压升高,放电电流减小,电晕放电区间更宽,伏安特性曲线向右偏移,优化了放电性能. 在高温下通过正极性电源施加电压,标准煤气及添加水蒸气调质后的热解煤气都具有较高的击穿电压及正电晕放电区域,性能优于负极性电源.


关键词: 高温热解煤气,  放电,  气氛,  水蒸气,  电源极性 
Fig.1 Schematic diagram of lab-scale high temperature discharge system
气氛组别 φB/%
CH4 H2 CO CO2 N2
标准煤气 49.3 26.0 11.2 8.0 5.75
1 70.0 16.0 6.6 4.8 3.50
2 35.0 33.8 14.5 10.4 7.50
3 40.0 40.0 8.8 6.4 4.00
4 57.4 15.0 12.8 9.0 6.61
5 44.0 23.0 20.0 7.0 5.20
6 55.4 29.2 ? 9.0 6.50
7 43.5 22.6 9.6 20.0 5.00
8 53.2 28.1 12.1 ? 6.21
9 44.0 23.0 10.0 7.0 15.00
Tab.1 High temperature pyrolysis gas experimental atmospheres
Fig.2 Influence of temperature on discharge of pyrolysis gas
Fig.3 Influence of CH4volume fraction on pyrolysis gas discharge at different temperatures
Fig.4 Growth of carbon filaments at 600 ℃
气氛组别 φB/%
CH4 H2 CO CO2 N2 C2H4
入口 70.0 16.0 6.6 4.8 3.5 0
出口 66.0 21.0 8.7 3.5 3.3 0.1
Tab.2 Comparison of gas composition in and out of discharge tube at 600 ℃
Fig.5 Influence of H2 volume fraction on pyrolysis gas discharge at different temperatures
气氛组别 φB/%
CH4 H2 CO CO2 N2
入口 40.0 40.0 8.8 6.4 4.0
出口 44.3 38.1 12.4 4.85 3.6
Tab.3 Comparison of gas composition in and out of discharge tube with high H2 volume fraction atmosphere
Fig.6 Growth of carbon filament with low H2 volume fraction atmosphere
Fig.7 Influence of CO volume fraction on pyrolysis gas discharge at different temperatures
Fig.8 Comparison of CO discharge characteristics at 20 ℃ and 600 ℃
Fig.9 Influence of CO2volume fraction on pyrolysis gas discharge at different temperatures
Fig.10 Influence of N2volume fraction on pyrolysis gas discharge at different temperatures
Fig.11 Optimization effect of atmosphere conditioning on pyrolysis gas discharge
气氛
组别
φB/%
H2O 标准煤气
调质煤气1 10 90
调质煤气2 30 70
调质煤气3 50 50
Tab.4 Composition of tempered pyrolysis gas
Fig.12 Influence of H2O volume fraction on pyrolysis gas discharge at different temperatures
Fig.13 Influence of positive power on discharge of pyrolysis gas at 400 ℃ and 600 ℃
Fig.14 Influence of positive power on discharge of high CH4pyrolysis gas at 400 ℃ and 600 ℃
Fig.15 Influence of positive power on discharge of tempered pyrolysis gas 3 at 600 ℃
[1]   中华人民共和国国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2019.
[2]   岑可法 煤炭高效清洁低碳利用研究进展[J]. 科技导报, 2018, 36 (10): 66- 74
CEN Ke-fa Research progress and outlook for efficient, clean and low-carbon coal utilization[J]. Science and Technology Review, 2018, 36 (10): 66- 74
[3]   白效言, 张飏, 王岩, 等 低阶煤热解关键技术问题分析及研究进展[J]. 煤炭科学技术, 2018, 46 (1): 192- 198
BAI Xiao-yan, ZHANG Biao, WANG Yan, et al Analysis of key issues and research progress in pyrolysis of low rank coal[J]. Coal Science and Technology, 2018, 46 (1): 192- 198
[4]   SEVILLE J P. Gas cleaning in demanding applications [M]. Berlin: Springer Science and Business Media, 2013.
[5]   SHALE C C Progress in high-temperature electrostatic precipitation[J]. Journal of the Air Pollution Control Association, 1967, 17 (3): 159- 160
doi: 10.1080/00022470.1967.10468962
[6]   FULYFUL F K High temperature-high pressure effect on performance of an electrostatic precipitator[J]. Journal of Kerbala University, 2008, 6 (2): 84- 92
[7]   WANG X H, NI M J, XIAO G, et al An analytical method for DC negative corona discharge in a wire-cylinder device at high temperatures[J]. Journal of Electrostatics, 2014, 72 (4): 270- 284
doi: 10.1016/j.elstat.2014.05.001
[8]   YAN P, ZHENG C, ZHU W, et al An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs[J]. Applied Energy, 2016, 164: 28- 35
doi: 10.1016/j.apenergy.2015.11.040
[9]   WEISSLER G L Positive and negative point-to-plane corona in pure and impure hydrogen, nitrogen, and argon[J]. Physical Review, 1943, 63 (3/4): 96
[10]   AKISHEV Y S, APONIN G I, KARAL’NIK V B, et al Phenomenology of a high-current negative point-to-plane corona in nitrogen[J]. Plasma Physics Reports, 2004, 30 (9): 779- 787
doi: 10.1134/1.1800224
[11]   BOLOGA A, PAUR H, SEIFERT H, et al Influence of gas composition, temperature and pressure on corona discharge characteristics[J]. International Journal of Plasma Environmental Science and Technology, 2011, 5 (2): 110- 116
[12]   XIAO G, WANG X, ZHANG J, et al Characteristics of DC discharge in a wire-cylinder configuration at high ambient temperatures[J]. Journal of Electrostatics, 2014, 72 (1): 13- 21
doi: 10.1016/j.elstat.2013.10.013
[13]   方梦祥, 柳佳佳, 岑建孟, 等 高温静电除尘技术研究进展及应用前景[J]. 高电压技术, 2019, 45 (4): 1108- 1117
FANG Meng-xiang, LIU Jia-jia, CEN Jian-meng, et al Research progress and application prospect of high temperature electrostatic precipitation technology[J]. High Voltage Engineering, 2019, 45 (4): 1108- 1117
[14]   王浩霖, 骆仲泱, 赫明春, 等 烟气成分对静电除尘器放电特性的影响[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2336- 2343
WANG Hao-lin, LUO Zhong-yang, HE Ming-chun, et al Effect of gas composition on discharge characteristics of electrostatic precipitator[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2336- 2343
[15]   BUSH J R, FELDMAN P L, ROBINSON M High temperature, high pressure electrostatic precipitation[J]. Journal of the Air Pollution Control Association, 1979, 29 (4): 365- 371
doi: 10.1080/00022470.1979.10470802
[16]   CHEN Q, FANG M, CEN J, et al Characteristics of negative DC discharge in a wire-cylinder configuration under coal pyrolysis gas components at high temperatures[J]. RSC Advances, 2018, 8 (40): 22737- 22747
doi: 10.1039/C8RA03205J
[17]   徐海成, 戈亮 二氧化碳加氢逆水汽变换反应的研究进展[J]. 化工进展, 2016, 35 (10): 3180- 3189
XU Hai-cheng, GE Liang Progress on the catalytic hydrogenation of CO2 via reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2016, 35 (10): 3180- 3189
[1] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[2] Bang-huang CAI,Hui-min SONG,Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1839-1848.
[3] Hao ZHOU,Zi-xian BAI,Zhen-huan CHEN,Jia-kai ZHANG. Characteristics of ash deposition growth in mixed atmosphere of NH3 and SO3[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 389-397.
[4] Shi-quan SHAN,Zhi-jun ZHOU,Jian-ping KUANG,Yu ZHANG,Ke-fa CEN. Lignite pyrolysis and oxy-fuel combustion characteristics under N2 and CO2 atmospheres[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1826-1834.
[5] Ze-kun XU,Hong-yu SHEN,Tao HU,Xiang LI,Shu-rong DONG. New electrostatic discharge protection device for VBO high speed chip[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 794-800.
[6] XU Li-gang, HUANG Ya-ji, WANG Jian, ZOU Lei, YUE Jun-feng. High-temperature corrosion properties of water wall material 15CrMoG under reducing atmosphere[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1535-1541.
[7] LIU Jia-jia, CEN Jian-meng, FANG Meng-xiang, CHEN Quan-lin. Direct Current discharge characteristics under different gas compositions at high temperature[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 971-979.
[8] WAN Wu-yi, SHI Meng-shan, ZHANG Bo-ran, FAN Lei-lei. Experimental investigation on characteristics of horizontal vortex column in side-flow energy dissipation well[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2083-2091.
[9] TIAN Shuai-qi, ZHANG Qing-yu, WANG Ke, FAN Li-wu, YU Zi-tao, GE Jian. Effect of sample size on transient measurement of water vapor diffusion coefficient[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2077-2082.
[10] ZHANG Feng, LIU Chang, HUANG Lu, WU Zong-guo. Robust ESD protection device based on dual-direction silicon controlled rectifier[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1676-1680.
[11] CHEN Jian, WANG Jin, LU Guo-dong. Electrode wear layered compensation method with pre-deformation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 436-444.
[12] XU Xi, XU Dian, YAN Pei, ZHU Wei-zhuo, ZHENG Cheng-hang, GAO Xiang, LUO Zhong-yang, NI Ming-jiang, CEN Ke-fa. Particle collection in wire-plate electrostatic precipitators at high temperature[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 487-493.
[13] LV Jun-xiang, LIU Jun-heng, SUN Ping, SU Wen-bo, MENG Jian, WAN Yao-feng. Effects of discharge reactor condition on charge-mass ratio of diesel particles[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2414-2419.
[14] LI Xiao hua, BAO Wei wei, WANG Jing, LI Hui xia, CAI Yi xi. Heat dissipation of LED headlamps based on corona discharge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1284-1289.
[15] WANG Jing, CAI Yi xi, BAO Wei wei, LI Hui xia. Experimental study of high power LEDs enhanced cooling performance by ionic wind[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1952-1958.