Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1652-1659    DOI: 10.3785/j.issn.1008-973X.2021.09.006
    
Effect of inorganic ash on pyrolysis characteristics of organic matter of biogas residue from food waste
Wan-li WANG(),Kai SUN,Qun-xing HUANG*(),Jian-hua YAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1048KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effect of inorganic ash in biogas residue on the pyrolysis of its organic matter was studied, aiming at the biogas residue produced by anaerobic treatment of food waste has the characteristics of large yield and high ash mass fraction. The kinetics characteristics and products of pyrolysis were analyzed by thermogravimetric analysis and pyrolysis-gas chromatography/mass spectrometry technology (Py-GC/MS). Kinetic results show that the weight loss rate increases significantly, and the pyrolysis initiation temperature decreases from 180 ℃ to 160 ℃ after ash was removed. The total activation energy of the ash-removed biogas residue is slightly higher than that of the biogas residue, the possible reason is that the ash removal treatment can increase the internal pores of the biogas residue, which can promote the release of volatiles, weaken the catalytic cracking effect of the ash in the pyrolysis. According to the analysis results of pyrolysis products, the NaCl can promote the conversion of hydrocarbons to ketones, and the ZnCl2 promotes the decarboxylation of acids to produce hydrocarbons, which increased to 66.8% in the oil product. The presence of metal oxides such as Fe2O3 and Al2O3 increases the content of hydrocarbons to 66.8% and 72.7% respectively, while the CaO and MgO promote the formation of ketones through the decarboxylation of acids, which are high up to 46.5% and 39.4% respectively.



Key wordsfood waste      biogas residue      inorganic ash      pyrolysis      kinetics     
Received: 27 August 2020      Published: 20 October 2021
CLC:  X 705  
Fund:  国家重点研发计划资助项目(2018YFC1901300);国家自然科学基金资助项目(51621005)
Corresponding Authors: Qun-xing HUANG     E-mail: wangwanli0112@163.com;hqx@zju.edu.cn
Cite this article:

Wan-li WANG,Kai SUN,Qun-xing HUANG,Jian-hua YAN. Effect of inorganic ash on pyrolysis characteristics of organic matter of biogas residue from food waste. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1652-1659.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.006     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1652


无机灰分对餐厨沼渣中有机质热解特性的影响

针对餐厨垃圾厌氧处理所产生的沼渣具有产量大、灰分质量分数高的特点,研究沼渣中无机灰分对其热解过程的影响. 通过热重分析和热裂解?气相色谱质谱联用技术(Py-GC/MS)分析沼渣热解动力学特性及其产物. 动力学分析结果表明,沼渣除灰后,失重速率显著提高,热解起始温度由180 ℃降至160 ℃. 除灰沼渣的总表观活化能比沼渣的略高,原因可能是除灰使沼渣内部孔隙增加,在促进挥发分析出的同时,削弱了部分组分在热解过程中的催化裂解作用. 产物分析结果表明,NaCl能够促进油相产物中烃类向酮类的转化,ZnCl2通过促进酸类的脱羧作用,使烃类质量分数提高至66.8%;Fe2O3和Al2O3使烃类物质的质量分数分别提高至66.8%和72.7%,CaO和MgO可以促进酸类脱羧生成酮,使产物中酮类的质量分数高达46.5%和39.4%.


关键词: 餐厨垃圾,  沼渣,  无机灰分,  热解,  动力学 
Fig.1 Samples of experimental biogas residue
样品 wB/% e/(MJ·kg?1
水分 灰分 挥发分 固定碳 C H O N S
沼渣 1.8 29.7 62.0 6.5 45.1 6.1 14.1 2.6 0.6 19.9
除灰沼渣 8.5 13.0 70.8 7.7 52.0 6.6 16.8 2.8 0.3 25.1
Tab.1 Proximate and ultimate analysis of samples
样品 wB/%
SiO2 Al2O3 MgO Fe2O3 CaO Na2O K2O 其他
沼渣 33.9 18.0 16.7 10.6 9.6 1.3 1.0 8.9
Tab.2 Main ash components of biogas residue
Fig.2 XRD patterns of biogas residue ash components
Fig.3 TG/DTG curves of biogas residue and ash-removed biogas residue
样品 θ/℃ E/(kJ·mol?1 A/min?1 r2
沼渣 180~365 33.75 128.01 0.99
365~525 32.93 75.14 0.96
600~675 21.36 4.71 0.95
除灰沼渣 160~280 79.87 6.76×107 0.99
280~510 11.39 2.03 0.96
Tab.3 Kinetic parameters for pyrolysis of biogas residue and ash-removed biogas residue
Fig.4 Mass spectrogram of biogas residue and ash-removed biogas residue
Fig.5 Product distribution of biogas residue and ash-removed biogas residue
Fig.6 Effect of chlorinated salts on pyrolysis products of ash-removed biogas residue
Fig.7 Effect of oxides on the pyrolysis products of ash-removed biogas residue
Fig.8 Decarboxylation of carboxylic acids to ketones
[1]   李刚, 卢明, 吴春强, 等 上海湿垃圾沼渣特性及资源化利用探索[J]. 园林, 2020, 6: 25- 29
LI Gang, LU Ming, WU Chun-qiang, et al Research on the characteristics and resource utilization of food waste in Shanghai[J]. Landscape Architecture, 2020, 6: 25- 29
[2]   LI Y Y, JIN Y J, LI J H, et al Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion[J]. Energy, 2017, 118: 377- 386
doi: 10.1016/j.energy.2016.12.041
[3]   YANG Y Q, SHEN D S, LI N, et al Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion[J]. Environmental Science and Pollution Research, 2013, 20 (4): 2162- 2171
doi: 10.1007/s11356-012-1414-y
[4]   DING K, ZHONG Z P, ZHANG B, et al Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 55- 63
doi: 10.1016/j.jaap.2016.10.023
[5]   LOPEZ, MARCO I D, CABALLERO B M, et al Pyrolysis of municipal plastic wastes: influence of raw material composition[J]. Waste Management, 2010, 30 (4): 620- 627
doi: 10.1016/j.wasman.2009.10.014
[6]   ANSAH E, WANG L J, SHAHBAZI A Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components[J]. Waste Management, 2016, 56: 196- 206
doi: 10.1016/j.wasman.2016.06.015
[7]   ZHENG X Y, CHEN C, YING Z, et al Py-GC/MS study on tar formation characteristics of MSW key component pyrolysis[J]. Waste and Biomass Valorization, 2017, 8 (2): 1- 7
[8]   GAO N B, LI J J, QI B Y, et al Thermal analysis and products distribution of dried sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 43- 48
doi: 10.1016/j.jaap.2013.10.002
[9]   NEUMANN J, BINDER S, APFELBACHER A, et al Production and characterization of a new quality pyrolysis oil, char and syngas from digestate: introducing the thermo-catalytic reforming process[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 137- 142
doi: 10.1016/j.jaap.2014.11.022
[10]   WONGROD S, SIMON S, GUIBAUD G, et al Lead sorption by biochar produced from biogas digestates: consequences of chemical modification and washing[J]. Journal of Environmental Management, 2018, 219: 277- 284
[11]   LIU J X, HUANG S M, CHEN K, et al Preparation of biochar from food waste digestate: pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302: 122841
doi: 10.1016/j.biortech.2020.122841
[12]   JING L, HU S, SUN L S, et al Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass[J]. Bioresource Technology, 2013, 146: 254- 260
doi: 10.1016/j.biortech.2013.07.063
[13]   SERT M, BALLICE L, YUKSEL M, et al Effect of demineralization on product yield and composition at isothermal pyrolysis of Eynez lignites[J]. Industrial and Engineering Chemistry Research, 2011, 50 (18): 10400- 10406
doi: 10.1021/ie2008604
[14]   SHAO J A, YAN R, CHEN H P, et al Catalytic effect of metal oxides on pyrolysis of sewage sludge[J]. Fuel Processing Technology, 2010, 91 (9): 1113- 1118
doi: 10.1016/j.fuproc.2010.03.023
[15]   ELLIS N, MASNADI M S, ROBERTS D G, et al Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chemical Engineering Journal, 2015, 279: 402- 408
doi: 10.1016/j.cej.2015.05.057
[16]   RAVEENDRAN K, GANESH A, KHILAR K C Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74 (12): 1812- 1822
doi: 10.1016/0016-2361(95)80013-8
[17]   YANG H P, YAN R, CHEN H P, et al Influence of mineral matter on pyrolysis of palm oil wastes[J]. Combustion and Flame, 2006, 146 (4): 605- 611
doi: 10.1016/j.combustflame.2006.07.006
[18]   王贤华, 陈汉平, 王静, 等 无机矿物质盐对生物质热解特性的影响[J]. 燃料化学学报, 2008, 36 (6): 679- 683
WANG Xian-hua, CHEN Han-ping, WANG Jing, et al Influences of mineral matters on biomass pyrolysis characteristics[J]. Journal of Fuel Chemistry and Technology, 2008, 36 (6): 679- 683
doi: 10.3969/j.issn.0253-2409.2008.06.007
[19]   ASADIERAGHI M, WAN DAUD W M A Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions[J]. Energy Conversion and Management, 2014, 82: 71- 82
doi: 10.1016/j.enconman.2014.03.007
[20]   DAS P, GANESH A, WANGIKAR P Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products[J]. Biomass and Bioenergy, 2004, 27 (5): 445- 457
doi: 10.1016/j.biombioe.2004.04.002
[21]   EOM I Y, KIM K H, KIM J Y, et al Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents[J]. Bioresource Technology, 2011, 102 (3): 3437- 3444
doi: 10.1016/j.biortech.2010.10.056
[22]   中华人民共和国原煤炭工业局. 煤的工业分析方法: GB/T 212—2001 [S]. 北京: 中国标准出版社, 2001.
[23]   中华人民共和国原煤炭工业局. 煤的元素分析方法: GB/T 476—2001 [S]. 北京: 中国标准出版社, 2001.
[24]   中国煤炭工业协会. 石油燃料/煤的发热量测定方法: GB/T 213—2003 [S]. 北京: 中国标准出版社, 2003.
[25]   中国煤炭工业协会. 煤灰成分分析方法: GB/T 1574-2007 [S]. 北京: 中国标准出版社, 2007.
[26]   ZHANG X S, LEI H W, ZHU L, et al Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220: 233- 238
doi: 10.1016/j.biortech.2016.08.068
[27]   ZHOU L M, LUO T A, HUANG Q W Co-pyrolysis characteristics and kinetics of coal and plastic blends[J]. Energy Conversion and Management, 2009, 50 (3): 705- 710
doi: 10.1016/j.enconman.2008.10.007
[28]   ADAM J, BLAZSO M, MESZAROS E, et al Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts[J]. Fuel, 2005, 84 (12-13): 1494- 1502
[29]   LU Q, ZHANG Y, TANG Z, et al Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J]. Fuel, 2010, 89 (8): 2096- 2103
doi: 10.1016/j.fuel.2010.02.030
[30]   DONG C Q, ZHANG Z F, LU Q, et al Characteristics and mechanism study of analytical fast pyrolysis of poplar wood[J]. Energy Conversion and Management, 2012, 57: 49- 59
doi: 10.1016/j.enconman.2011.12.012
[31]   SUN L Z, ZHANG X D, CHEN L, et al Effect of preparation method on structure characteristics and fast pyrolysis of biomass with Fe/CaO catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 183- 189
doi: 10.1016/j.jaap.2015.09.011
[32]   孙俊. 碱金属对生物质热解气化催化作用的研究[D]. 长沙: 长沙理工大学, 2017: 42-43.
SUN Jun. Study on catalytic action of alkali metal on pyrolysis gasification of biomass [D]. Changsha: Changsha University of Science and Technology, 2017: 42-43.
[33]   ERWEI L, MARIO C, GONG X, et al Effects of KCl and CaCl2 on the evolution of anhydro sugars in reaction intermediates during cellulose fast pyrolysis [J]. Fuel, 2019, 251: 307- 315
doi: 10.1016/j.fuel.2019.04.006
[34]   ZHANG G D, YU F W, WANG W J, et al Influence of molten salts on soybean oil catalytic pyrolysis with/without a basic catalyst[J]. Energy and Fuels, 2014, 28 (1): 535- 541
doi: 10.1021/ef4015845
[35]   STEFANIDIS S D, KALOGIANNIS K G, ILIOPOULOU E F, et al In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102 (17): 8261- 8267
doi: 10.1016/j.biortech.2011.06.032
[36]   DAVID E, KOPAC J Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104638
doi: 10.1016/j.jaap.2019.104638
[37]   DING K, ZHONG Z P, WANG J Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technology, 2018, 261: 86- 92
doi: 10.1016/j.biortech.2018.03.138
[1] Hua-mei YANG,Jing LI,Xi-hua DU. Pyrolysis and product analysis of lignin monomer model compounds[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 976-983.
[2] Yi-fei ZHAO,Meng-xiang FANG,Yong-min SHI,Zhi-xiang XIA,Jian-meng CEN. Factors affecting discharge performance of high-temperature coal pyrolysis gas[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2115-2124.
[3] Kai ZHU,Yun-he WANG,Xue-wei QIN,Ya-dong HUANG,Qiang WANG,Ke WU. Effect of heating rate on asphalt combustion and gaseous products release characteristics[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1805-1811.
[4] Shi-quan SHAN,Zhi-jun ZHOU,Jian-ping KUANG,Yu ZHANG,Ke-fa CEN. Lignite pyrolysis and oxy-fuel combustion characteristics under N2 and CO2 atmospheres[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1826-1834.
[5] Xiao-jie LI,Jian-meng CEN,Zhi-xiang XIA,Meng-xiang FANG,Tao WANG,Qin-hui WANG,Zhong-yang LUO. Pressurized pyrolysis characteristics of pine sawdust and coal[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1298-1305.
[6] LIU Jia-jia, CEN Jian-meng, FANG Meng-xiang, CHEN Quan-lin. Direct Current discharge characteristics under different gas compositions at high temperature[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 971-979.
[7] DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang. Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 36-42.
[8] HAN Lei, ZHU Pei wang, CHENG Le ming, WANG Qin hui. Experiment on sintering reactions of acid leaching residue from coal ash[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 955-960.
[9] CHEN Ling hong, CHEN Xiang, WU Jian, WU Yan yan. Quantitative analysis of gaseous products evolved by coal combustion using TGFTIRMS technique[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 961-969.
[10] NI Ming jiang, ZHAO Le, FANG Meng xiang, LI Min, LI Chao,WANG Qin hui, LUO Zhong yang. Influence of catalyst on coal pyrolysis during CH4 atmosphere[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 320-326.
[11] SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 333-340.
[12] SUN Qiang, ZHANG Yan wei, LI Qian, WANG Zhi hua, GE Li chao, ZHOU Zhi jun, CHEN Ke fa. Physical and chemical characteristics and gasification reactivity of lignite fast pyrolysis char[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2045-2051.
[13] WANG Gang, ZHENG Hai feng, YIN Hong, YUAN Shen feng, CHEN Zhi rong. Pyrolysis of 1-chloro-1,1 difluoroethane to vinylidene fluoride[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1812-1816.
[14] PAN Zhi-juan, HUANG Qun-xing, Moussa-Mallaye Alhadj-Mallah, WANG Jun, CHI Yong, YAN Jian-hua.
Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1166-1172.
[15] MA Jian, XIE Yang, LUO Qi-yuan, XU Cang-su. Performance of diesel engine running on diesel fuel and its blends with refined biomass fast pyrolysis bio-oil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 632-637.