Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1805-1811    DOI: 10.3785/j.issn.1008-973X.2020.09.017
    
Effect of heating rate on asphalt combustion and gaseous products release characteristics
Kai ZHU1,2(),Yun-he WANG1,Xue-wei QIN1,Ya-dong HUANG3,Qiang WANG1,Ke WU2,4,*()
1. College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
2. Key Laboratory of Offshore Geotechnics and Material of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
3. Zhejiang General Fire and Rescue Brigade, Hangzhou 310000, China
4. The Engineering Research Center of Oceanic Sensing Technology and Equipment Ministry of Education, Zhoushan 316021, China
Download: HTML     PDF(1123KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mass loss process of asphalt combustion at different heating rates was analyzed by thermogravimetry coupled with Fourier transform infrared spectrometer. The release characteristics of gaseous products during asphalt combustion was obtained, and the kinetic parameters of asphalt combustion were calculated by Kissinger method, providing important theoretical basis to reveal the burning mechanism of asphalt and guide the design of flame-retardant and smoke-suppressive asphalt. Results show that asphalt combustion process mainly includes two stages: aerobic pyrolysis and heavy components combustion, and the reaction mechanisms of the two stages are different. There are three mass loss peaks in the aerobic pyrolysis stage, corresponding to the pyrolysis of saturates, aromatics, and resins, respectively, and the activation energies of the three components combustion increase accordingly. With the increase of heating rates, the three mass loss peaks overlapped, the maximum mass loss rate increased significantly, and the infrared spectrum absorption peak intensity increased gradually. While in the heavy components combustion stage, the activation energy is lower than that of resins aerobic pyrolysis, the maximum mass loss rate and the infrared spectrum absorption peak intensity does not change much with the heating rate.



Key wordsheating rate      thermogravimetry-Fourier transform infrared spectrum      reaction kinetics      aerobic pyrolysis      heavy components combustion     
Received: 27 August 2019      Published: 22 September 2020
CLC:  TK 16  
Corresponding Authors: Ke WU     E-mail: zhukai@cjlu.edu.cn;wuke@zju.edu.cn
Cite this article:

Kai ZHU,Yun-he WANG,Xue-wei QIN,Ya-dong HUANG,Qiang WANG,Ke WU. Effect of heating rate on asphalt combustion and gaseous products release characteristics. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1805-1811.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.017     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1805


升温速率对沥青燃烧和气态产物释放特性的影响

采用热重-傅里叶变换红外光谱联用实验分析不同升温速率下沥青燃烧的失重过程,得到沥青燃烧过程中气态产物的析出规律,并利用Kissinger法计算沥青燃烧的动力学参数,为揭示火灾中沥青的燃烧机理和指导阻燃抑烟沥青设计提供重要的理论依据. 结果表明,沥青燃烧过程主要包括有氧热解和重质组分燃烧2个阶段,且两阶段的反应机理不同. 沥青有氧热解阶段包含3个失重峰,分别对应饱和分、芳香分和胶质的热解,3种成分燃烧的活化能依次增大;随着升温速率的增大,3个失重峰出现重叠,最大失重速率明显增加,气态产物的红外光谱吸收峰强度逐渐增强. 重质组分燃烧阶段的活化能相比胶质有氧热解更低,最大失重速率及红外光谱吸收峰强度随升温速率变化不大.


关键词: 升温速率,  热重-傅里叶变换红外光谱,  反应动力学,  有氧热解,  重质组分燃烧 
指标 试验结果 试验规程
25 °C 针入度 66.5 dmm JTG E20 T604-2 011
15 °C 延度 >150 cm JTG E20 T605-2 011
软化点(R&B) 47.8 °C JTG E20 T606-2 011
闪点(开口) 340 °C JTG E20 T611-2 011
燃点 375 °C JTG E20 T611-2 011
Tab.1 Base asphalt performance index
Fig.1 Thermogravimetric curves at different heating rates
Fig.2 Mass loss rate curves at different heating rates
β/
(°C·min?1
有氧热解阶段(Stage I) 重质组分燃烧阶段(Stage II)
δ/% Stage I-1 Stage I-2 Stage I-3 δ/% rt/°C tp/°C vmax/
(%·min?1
rt/
°C
tp/
°C
vmax/
(%·min?1
rt/
°C
tp/
°C
vmax/
(%·min?1
rt/
°C
tp/
°C
vmax/
(%·min?1
5 51.6 272 ~ 347 319 ?0.5 347 ~ 387 362 ?2.0 387 ~ 479 449 ?3.0 39.4 479 ~ 584 524 ?3.4
10 56.4 285 ~ 362 345 ?1.0 362 ~ 415 382 ?3.0 415 ~ 515 462 ?6.3 35.5 515 ~ 672 565 ?3.9
20 57.4 326 ~ 381 371 ?2.8 381 ~ 438 416 ?6.3 438 ~ 536 473 ?11.6 34.2 536 ~ 733 598 ?4.8
Tab.2 Typical thermogravimetric data of different combustion stages at three heating rates
Fig.3 Combustion stage division at heating rate of 20 °C/min
反应阶段 R2 E/(kJ·mol?1 A/s?1
StageI-1 0.999 75.1 8.74×103
StageI-2 0.981 81.1 9.81×103
StageI-3 0.997 244.3 2.07×1015
StageII 0.997 93.6 1.92×103
Tab.3 Calculation results of asphalt combustion kinetic parameters
Fig.4 Kinetic fitting curve using Kissinger method
Fig.5 3D FTIR spectra and G-S intensity curves at different heating rates
Fig.6 Infrared spectra of gaseous products at different stages
[1]   QIU J, YANG T, WANG X, et al Review of the flame retardancy on highway tunnel asphalt pavement[J]. Construction and Building Materials, 2019, 195: 468- 482
doi: 10.1016/j.conbuildmat.2018.11.034
[2]   XU T, HUANG X M Combustion properties of asphalt binder containing flame retardant[J]. Fire and Materials, 2012, 36 (2): 97- 106
doi: 10.1002/fam.1090
[3]   PUENTE E, LAZARO D, ALVEAR D Study of tunnel pavements behaviour in fire by using coupled cone calorimeter-FTIR analysis[J]. Fire Safety Journal, 2016, 81: 1- 7
doi: 10.1016/j.firesaf.2016.01.010
[4]   朱凯, 黄志义, 吴珂, 等 消石灰对沥青阻燃性能的影响[J]. 浙江大学学报: 工学版, 2015, 49 (5): 963- 968
ZHU Kai, HUANG Zhi-yi, WU Ke, et al Hydrated lime modification of asphalt mixtures with improved fire performance[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (5): 963- 968
[5]   SHI H Q, XU T, JIANG R L Combustion mechanism of four components separated from asphalt binder[J]. Fuel, 2017, 192: 18- 26
doi: 10.1016/j.fuel.2016.11.110
[6]   吴珂, 朱凯, 黄志义, 等 基于红外光谱研究沥青燃烧机理和有害气体成分分析[J]. 光谱学与光谱分析, 2012, 32 (8): 2089- 2094
WU Ke, ZHU Kai, HUANG Zhi-yi, et al Research on the combustion mechanism of asphalt and the composition of harmful gas based on infrared spectral analysis[J]. Spectroscopy and Spectral Analysis, 2012, 32 (8): 2089- 2094
doi: 10.3964/j.issn.1000-0593(2012)08-2089-06
[7]   XIA W J, XU T, WANG H Thermal behaviors and harmful volatile constituents released from asphalt components at high temperature[J]. Journal of Hazardous Materials, 2019, 373: 741- 752
doi: 10.1016/j.jhazmat.2019.04.004
[8]   解强, 梁鼎成, 田萌, 等 升温速率对神木煤热解半焦结构性能的影响[J]. 燃料化学学报, 2015, 43 (07): 798- 805
XIE Qiang, LIANG Ding-cheng, TIAN Meng, et al Influence of heating rate on structure of chars derived from pyrolysis of Shenmu coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43 (07): 798- 805
doi: 10.3969/j.issn.0253-2409.2015.07.004
[9]   YUE C, WATKINSON A P Pyrolysis of pitch[J]. Fuel, 1998, 77 (7): 695- 711
doi: 10.1016/S0016-2361(97)00236-6
[10]   XIA W, XU T, WANG S, et al Mass loss evolution of bituminous fractions at different heating rates and constituent conformation of emitted volatiles[J]. Energy Science and Engineering, 2019, 7 (6): 2782- 2796
doi: 10.1002/ese3.459
[11]   WU K, ZHU K, HAN J, et al Non-isothermal kinetics of styrene-butadiene-styrene asphalt combustion[J]. Chinese Physics B, 2013, 22 (6): 664- 669
[12]   XU T, HUANG X M Combustion properties and multistage kinetics models of asphalt binder filled with flame retardant[J]. Combustion Science and Technology, 2011, 183 (10): 1027- 1038
doi: 10.1080/00102202.2011.580803
[13]   LI K Y, HUANG X Y, FLEISCHMANN C, et al Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger's method[J]. Energy and Fuels, 2014, 28 (9): 6130- 6139
doi: 10.1021/ef501380c
[14]   朱凯. 基于沥青多组分燃烧特性的钙基纳米复合阻燃体系研究[D]. 杭州: 浙江大学, 2015.
ZHU Kai. Study on calcium-based flame retardant nanocomposites base on multi-components combustion characteristics of asphalt [D]. Hangzhou: Zhejiang University, 2015.
[15]   SHI H Q, XU T, ZHOU P, et al Combustion properties of saturates, aromatics, resins, and asphaltenes in asphalt binder[J]. Construction and Building Materials, 2017, 136: 515- 523
doi: 10.1016/j.conbuildmat.2017.01.064
[16]   XU T, HUANG X M Study on combustion mechanism of asphalt binder by using TG-FTIR technique[J]. Fuel, 2010, 89 (9): 2185- 2190
doi: 10.1016/j.fuel.2010.01.012
[17]   XIA W J, XU T, WANG H, et al Combustion kinetics of asphalt binder components and the release processes of gaseous products[J]. Combustion and Flame, 2019, 206: 322- 333
doi: 10.1016/j.combustflame.2019.05.009
[18]   胡荣祖, 史启祯. 热分析动力学: 第二版[M]. 北京: 科学出版社, 2008.
[19]   张治国, 尹红 聚氧丙烯醚的非等温热分解动力学及寿命[J]. 浙江大学学报: 工学版, 2006, 40 (4): 689- 693
ZHANG Zhi-guo, YIN Hong Non-isothermal decomposition kinetics and lifetime of polyoxypropylene ether[J]. Journal of Zhejiang University: Engineering Science, 2006, 40 (4): 689- 693
[20]   GONG J, GU Y, ZHAI C, et al A hybrid pyrolysis mechanism of phenol formaldehyde and kinetics evaluation using isoconversional methods and genetic algorithm[J]. Thermochimica Acta, 2020, 690: 178708
[1] Jiang-kuan XING,Hai-ou WANG,Kun LUO,Yun BAI,Jian-ren FAN. Random forest model for predicting kinetic parameters of biomass devolatilization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 605-612.
[2] ZHANG Jian-fei, LIU Ti-feng, LV Xiu-yang. Kinetics of non-catalyzed hydrolysis of polyvinyl acetate
in near-critical water
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 914-918.
[3] ZHONG Yi, GAO Xiang, JIA Zhong-Yang, et al. Absorption kinetics of SO2/NO in KMnO4/NaOH solutions[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 948-952.