Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1298-1305    DOI: 10.3785/j.issn.1008-973X.2019.07.008
Mechanical and Energy     
Pressurized pyrolysis characteristics of pine sawdust and coal
Xiao-jie LI(),Jian-meng CEN,Zhi-xiang XIA,Meng-xiang FANG*(),Tao WANG,Qin-hui WANG,Zhong-yang LUO
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(811KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The pressurized individual pyrolysis and co-pyrolysis characteristics of pine sawdust and Xinjiang Bernstein bituminous were analyzed. Pyrolysis experiments were conducted in pressurized thermogravimetric analyzer (PTGA) under 0.1-2.0 MPa. Pyrolysis weight loss curves were drawn according to samples pyrolysis weight loss, and weight loss rate and pyrolysis kinetics of curves were examined. Results show that increased pressure depresses the release of volatiles and increases apparent activation energy of the main pyrolysis stage by 56%-85%. The process of co-pyrolysis is not the accumulation of individual pyrolysis, but is affected by inhibition or acceleration effect of synergistic reaction. The experimental weight loss of co-pyrolysis increases 8%-23% in pressurized condition while decreases 6.7% in atmospheric condition compared to the calculated results. The apparent activation energy of co-pyrolysis in both atmospheric and pressurized condition is lower than that of individual pyrolysis during the main pyrolysis stages.



Key wordspine sawdust      Bernstein coal      co-pyrolysis      pressurized pyrolysis      kinetics     
Received: 24 August 2018      Published: 25 June 2019
CLC:  TK 16  
Corresponding Authors: Meng-xiang FANG     E-mail: Leejie@zju.edu.cn;mxfang@zju.edu.cn
Cite this article:

Xiao-jie LI,Jian-meng CEN,Zhi-xiang XIA,Meng-xiang FANG,Tao WANG,Qin-hui WANG,Zhong-yang LUO. Pressurized pyrolysis characteristics of pine sawdust and coal. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1298-1305.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.008     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1298


松木屑与煤加压热解特性

研究松木屑和新疆博斯坦煤的加压单独热解及共热解特性,热解实验在加压热重分析仪上开展,压力为0.1~2.0 MPa. 通过样品热解失重情况绘制热解失重曲线,对曲线进行失重速率分析和热解动力学分析. 结果发现,热解压力升高会抑制样品热解挥发分的析出,使样品主要热解阶段的表观活化能增大56%~85%;松木屑与煤共热解过程不是两者单独热解过程的简单叠加,而是两者协同反应相互促进或抑制的结果,松木屑与煤共热解失重相较计算值在加压条件下提高了8%~23%,在常压条件下降低了6.7%,但不管是常压还是加压共热解,共热解主要热解阶段的表观活化能均较松木屑和煤单独热解降低.


关键词: 松木屑,  博斯坦煤,  共热解,  加压热解,  动力学 
样品 工业分析wB/% 元素分析wB/%
M A V FC C H N S O
博斯坦煤 1.36 5.93 37.88 54.83 70.88 4.60 1.37 0.49 15.37
松木屑 2.07 2.31 81.14 14.48 48.56 5.70 0.15 0.77 40.44
Tab.1 Proximate and ultimate analysis of Bernstein coal and pine sawdust
样品 w(SiO2 w(Al2O3 w(Fe2O3 w(CaO) w(MgO) w(K2O) w(Na2O)
博斯坦煤 50.21 14.43 10.33 12.85 4.58 0.99 1.08
松木屑 58.06 9.62 6.02 9.00 9.06 3.19 2.22
Tab.2 Ash composition analysis of Bernstein coal and pine sawdust
Fig.1 Weight loss curves for pressurized pyrolysis of Bernstein coal and pine sawdust
样品 p/MPa θs/°C (dm/dtmax/(‰·min?1 θmax/°C θe/°C (dm/dtmean/(‰·min?1 V/% D/10?12
博斯坦煤 0.1 293 ?2.59 407 611 ?1.07 34.0 7.90
博斯坦煤 0.5 291 ?2.21 405 604 ?0.78 24.4 3.57
博斯坦煤 1.0 306 ?1.98 406 561 ?0.75 19.0 2.26
博斯坦煤 1.5 315 ?1.81 390 564 ?0.72 17.9 1.90
博斯坦煤 2.0 321 ?1.70 381 537 ?0.59 12.8 1.05
松木屑 0.1 163 ?7.67 316 373 ?3.37 70.7 354
松木屑 0.5 162 ?7.43 316 384 ?2.90 64.4 271
松木屑 1.0 177 ?6.88 325 377 ?2.70 53.9 174
松木屑 1.5 189 ?6.76 311 375 ?2.68 49.8 153
松木屑 2.0 196 ?6.60 300 359 ?2.34 38.2 100
Tab.3 Pressurized pyrolysis parameters for major stage of Bernstein coal and pine sawdust
Fig.2 Weight loss curves for pressurized co-pyrolysis of Bernstein coal and pine sawdust
Fig.3 Comparison of TG curves between calculated values and experimental values for co-pyrolysis of pine sawdust and Bernstein coal
热解段 p/MPa θmax/°C (dm/dtmax/(‰·min?1 V/% ${\dfrac{{{V_\infty }_{|{\rm{Exp}}.}-{V_\infty }_{|{\rm{Cal}}.}}}{{{V_\infty }_{|{\rm{Exp}}.}}}} \times {\text{100\% }}$
实验值 计算值 实验值 计算值 实验值 计算值
低温段 0.1 316 316 ?1.80 ?2.07 ? ? ?
低温段 0.5 309 316 ?1.65 ?1.77 ? ? ?
低温段 1.0 306 325 ?1.49 ?1.58 ? ? ?
低温段 1.5 299 311 ?0.91 ?1.45 ? ? ?
低温段 2.0 299 300 ?0.89 ?1.36 ? ? ?
高温段 0.1 405 407 ?2.00 ?1.53 44.4 47.6 ?6.72
高温段 0.5 401 405 ?1.99 ?1.49 39.3 36.4 7.97
高温段 1.0 398 406 ?1.93 ?1.38 33.1 28.9 14.53
高温段 1.5 386 390 ?1.91 ?1.35 28.5 25.9 10.04
高温段 2.0 381 381 ?1.70 ?1.32 22.5 18.3 22.95
Tab.4 Comparison of co-pyrolysis parameters between calculated values and experimental values for pine sawdust and Bernstein coal
工况 p/MPa θ/°C 线性拟合方程 R2 E/(kJ·mol?1 A/min?1
松木屑单独热解 0.1 250~350 y=?6 867x?1.021 2 0.995 8 57.092 9.810×103
松木屑单独热解 0.5 250~350 y=?8 340.8x+1.619 5 0.989 1 69.345 5.210×106
松木屑单独热解 1.0 250~350 y=?10 406x+4.746 0.997 0 86.515 8.697×109
松木屑单独热解 1.5 250~350 y=?11 408x+6.96 0.998 0 94.846 1.561×1012
松木屑单独热解 2.0 250~350 y=?12 720x+9.828 0.998 4 105.754 1.284×1015
博斯坦煤单独热解 0.1 350~450 y=?8 662.4x-1.247 6 0.992 3 72.019 7.347×103
博斯坦煤单独热解 0.5 350~450 y=?10 913x+1.963 3 0.975 2 90.730 1 1.504×107
博斯坦煤单独热解 1.0 350~450 y=?12 808x+4.788 9 0.968 6 106.486 1.182×1010
博斯坦煤单独热解 1.5 350~450 y=?13 184x+5.761 2 0.949 1 109.612 1.141×1011
博斯坦煤单独热解 2.0 350~450 y=?13 486x+6.596 7 0.932 1 112.123 7.992×1011
共热解低温段 0.1 250~350 y=?4 671x?6.023 6 0.999 2 38.835 6.636×10?2
共热解低温段 0.5 250~350 y=?6 691.1x?2.583 8 0.995 2 55.630 2.617×102
共热解低温段 1.0 250~350 y=?9 845x+2.511 2 0.982 5 81.851 4.792×107
共热解低温段 1.5 250~350 y=?9 845x+2.511 2 0.996 5 92.011 5.027×109
共热解低温段 2.0 250~350 y=?12 442x+7.247 2 0.977 8 103.443 3.297×1012
共热解高温段 0.1 350~450 y=?3 826.9x?7.662 6 0.995 8 31.817 1.248×10?3
共热解高温段 0.5 350~450 y=?4 159.2x?7.095 4 0.996 7 34.580 5.008×10?3
共热解高温段 1.0 350~450 y=?4 600.6x?6.463 5 0.990 9 38.249 2.374×10?2
共热解高温段 1.5 350~450 y=?4 676.7x?6.379 7 0.997 2 38.882 2.926×10?2
共热解高温段 2.0 350~450 y=?6 212.6x?3.848 9 0.992 9 51.652 13.20
Tab.5 Kinetic parameters of pressurized pyrolysis of Bernstein coal, pine sawdust and their blends
[1]   KAJITANI S, ZHANG Y, UMEMOTO S, et al Co-gasification reactivity of coal and woody biomass in high-temperature gasification[J]. Energy and Fuels, 2010, 24 (1): 145- 151
doi: 10.1021/ef900526h
[2]   吴创之, 阴秀丽, 刘华财, 等 生物质能分布式利用发展趋势分析[J]. 中国科学院院刊, 2016, (02): 191- 198
WU Chuang-zhi, YIN Xiu-li, LIU Hua-cai, et al Perspective on development of distributed bioenergy utilization[J]. Bulletin of Chinese Academy of Sciences, 2016, (02): 191- 198
[3]   谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 270-281.
[4]   CHEN Z, GAO S, XU G Simultaneous production of CH4-rich syngas and high-quality tar from lignite by the coupling of noncatalytic/catalytic pyrolysis and gasification in a pressurized integrated fluidized bed [J]. Applied Energy, 2017, 208: 1527- 1537
doi: 10.1016/j.apenergy.2017.08.227
[5]   窦元元, 钟文琪, 周冠文, 等 煤加压低温热解制取焦油和煤气特性[J]. 东南大学学报: 自然科学版, 2018, 48 (01): 85- 91
DOU Yuan-yuan, ZHONG Wen-qi, ZHOU Guan-wen, et al Characteristics of gas and oil production in low temperature coal pressurized pyrolysis[J]. Journal of Southeast University: Nature Science Edition, 2018, 48 (01): 85- 91
[6]   COLLOT A G, ZHUO Y, DUGWELL D R, et al Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors[J]. Fuel, 1999, 78 (6): 667- 679
doi: 10.1016/S0016-2361(98)00202-6
[7]   ABOYADE A O, CARRIER M, MEYER E L, et al Slow and pressurized co-pyrolysis of coal and agricultural residues[J]. Energy Conversion and Management, 2013, 65 (SI): 198- 207
[8]   高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010.
[9]   肖军, 沈来宏, 王泽明, 等 生物质加压热重分析研究[J]. 燃烧科学与技术, 2005, (05): 31- 36
XIAO Jun, SHEN Lai-hong, WANG Ze-ming, et al Pressurized thermogravimetric analysis of pyrolysis of biomass[J]. Journal of Combustion Science and Technology, 2005, (05): 31- 36
[10]   舒新前. 煤催化热解制氢技术[M]. 北京: 科学出版社, 2011.
[11]   王贤华, 鞠付栋, 杨海平, 等 神府煤加压热解特性及热解动力学分析[J]. 中国电机工程学报, 2011, 31 (11): 40- 44
WANG Xian-hua, JU Fu-dong, YANG Hai-ping, et al Kinetics and properties analysis of Shenfu coal pressurized pyrolysis[J]. Proceedings of the CSEE, 2011, 31 (11): 40- 44
[12]   WANG J, YAN Q, ZHAO J, et al Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118 (3): 1663- 1673
doi: 10.1007/s10973-014-4043-5
[13]   PARK D K, KIM S D, LEE S H, et al Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresource Technology, 2010, 101 (15): 6151- 6156
doi: 10.1016/j.biortech.2010.02.087
[14]   DARMSTADT H, GARCIA-PEREZ M, CHAALA A, et al Co-pyrolysis under vacuum of sugar cane bagasse and petroleum residue: properties of the char and activated char products[J]. Carbon, 2001, 39 (6): 815- 825
doi: 10.1016/S0008-6223(00)00204-9
[15]   冉二君, 刘梅英, 牛智有 4种生物质秸秆的热解特性及其动力学分析[J]. 华中农业大学学报, 2015, 34 (05): 132- 137
RAN Er-jun, LIU Mei-ying, NIU Zhi-you Pyrolysis characteristics and kinetics analysis of four kinds of biomass straw[J]. Journal of Huazhong Agricultural University, 2015, 34 (05): 132- 137
[16]   杨景标, 张彦文, 蔡宁生 煤热解动力学的单一反应模型和分布活化能模型比较[J]. 热能动力工程, 2010, 25 (03): 301- 305
YANG Jing-biao, ZHANG Yan-wen, CAI Ning-sheng A comparison of a single reaction model with a distributed activation energy on coal pyrolysis kinetics[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25 (03): 301- 305
[17]   MOGHTADERI B, MEESRI C, WALL T F Pyrolytic characteristics of blended coal and woody biomass[J]. Fuel, 2004, 83 (6): 745- 750
doi: 10.1016/j.fuel.2003.05.003
[1] Kai ZHU,Yun-he WANG,Xue-wei QIN,Ya-dong HUANG,Qiang WANG,Ke WU. Effect of heating rate on asphalt combustion and gaseous products release characteristics[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1805-1811.
[2] DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang. Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 36-42.
[3] HAN Lei, ZHU Pei wang, CHENG Le ming, WANG Qin hui. Experiment on sintering reactions of acid leaching residue from coal ash[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 955-960.
[4] JIANG Kun, YAN Li-xia, JIANG Bin-bo, WANG Jing-dai, YANG Yong-rong. Kinetic model for methanol to propene process on HZSM-5[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1690-1696.
[5] DING Chun-sheng, ZHANG Tao, XU Yang-yang, GONG Fei. Performance study of trichloronitromethane removal in drinking water by Fe reducing[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2202-2207.
[6] ZHANG Jian-fei, LIU Ti-feng, LV Xiu-yang. Kinetics of non-catalyzed hydrolysis of polyvinyl acetate
in near-critical water
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 914-918.
[7] ZHAO De-ming, ZHANG Jian-ting, JIN Ning-ren, XU Xin-hua. Kinetics of phenol degradation in water using microwave/O3 system[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 770-774.
[8] YANG Hao, YANG Xiao-he, CHEN Yu-quan, PAN Min. Design of electrochemical biosensors based on diffusion kinetics[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2209-2213.
[9] ZHONG Yi, GAO Xiang, JIA Zhong-Yang, et al. Absorption kinetics of SO2/NO in KMnO4/NaOH solutions[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 948-952.
[10] DAN Chao-Jun, LV Xiu-Yang. Kinetics of 3-cyanopyridine hydrolysis in high temperature liquid water[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(09): 1692-1696.