Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 410-418    DOI: 10.3785/j.issn.1008-973X.2021.02.022
    
Three-dimensional numerical engineering simulation of oxy-fuel high alumina glass furnace
Chu-hang YANG(),Shao-hui JIA,Ye-cheng MA,Jing-wei ZHU,Yong LIU*(),Gao-rong HAN
State Key Laboratory of Silicon Materials, College of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1261KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Ansys Fluent 19.2 was used to study the melting tank and the combustion space of oxy-fuel high alumina float glass furnace with daily output of 100 t/d. The bidirectional thermal coupling between the top of the glass flow and the bottom of the combustion space for 3D modeling were employed. The influence of inlet batch length on temperature continuity in the coupling zone was investigated, and a formula for calculating refining index based on 3D flow field was proposed. Results show that after eight iterations of thermal coupling, residuals of temperature and heat flux tended to be stable, heat flux distribution of the heat exchanging zone between glass flow and combustion space corresponded to the temperature distribution at the bottom of combustion space. The temperature field of combustion space produced asymmetric transverse convection in glass flow. The temperature curve of the preset 6.6 m batch length showed the best continuity, and this kind of exploratory calculation provides a new method for judging the length of glass batch. The refining index of thermal coupling and non-thermal coupling were 4.6425 and 4.8279, indicating that conventional non-thermal coupling calculation has overestimated the refining ability of melting tank.



Key wordsthermal coupling      batch length      transverse convection      refining index      Fluent     
Received: 19 March 2020      Published: 09 March 2021
CLC:  TQ 171  
Fund:  “十三五”国家重点研发计划资助项目(2016YFB0303700);国家自然科学基金资助项目(U1809217,51672242);浮法玻璃新技术国家重点实验室开放课题基金资助项目
Corresponding Authors: Yong LIU     E-mail: 21926069@zju.edu.cn;liuyong.mse@zju.edu.cn
Cite this article:

Chu-hang YANG,Shao-hui JIA,Ye-cheng MA,Jing-wei ZHU,Yong LIU,Gao-rong HAN. Three-dimensional numerical engineering simulation of oxy-fuel high alumina glass furnace. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 410-418.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.022     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/410


全氧燃烧高铝玻璃熔窑三维数值工程仿真

基于Ansys Fluent 19.2软件采用玻璃液面与火焰空间底部双向热耦合方式进行三维联合建模,对日拉引量为100 t/d的全氧燃烧浮法高铝玻璃熔窑的玻璃池窑与火焰空间进行数值工程仿真,考察入口预设配合料堆长度对耦合区温度连续性的影响,提出基于3D流场的澄清因子计算公式. 结果表明:在8次热耦合迭代后,温度和热流残差趋于稳定,玻璃液与火焰空间进行热交换部分的热流分布与火焰空间底面温度分布相对应,火焰空间温度场在玻璃液产生了不对称的横向对流;预设6.6 m料堆长度的温度曲线具有最好的连续性,该试探性计算提供了判断玻璃配合料山长度的新方法;计算得到热耦合与非热耦合的澄清因子分别为4.6425、4.8279,表明常规非热耦合计算高估了池窑的澄清能力.


关键词: 热耦合,  配合料堆长度,  横向对流,  澄清因子,  Fluent 
熔窑位置 L /m W /m H /m
熔化部 23.0 7.0 1.1
卡脖 4.2 2.8 1.1
冷却部 8.8 6.5 1.1
Tab.1 Main size parameters of melting tank
喷枪位置 S /m
1# 2# 3# 4# 5# 6#
窑炉左侧喷枪 2.9 4.6 6.4 10.4 12.1 13.8
窑炉右侧喷枪 2.1 3.8 5.5 9.6 11.3 13.0
Tab.2 Position of flame guns
Fig.1 Structural models of combustion space and melting tank
Fig.2 Relationship between viscosity and temperature of high alumina glass
燃气类型 $\varphi _{\rm{B}} $/% 燃气类型 $\varphi _{\rm{B}} $/%
CH4 95.201 C5H12 0.089
C2H6 2.286 H2 1.201
C3H8 0.407 CO2 0.663
C4H10 0.153 ? ?
Tab.3 Fuel composition of combustion space
喷枪编号 qf /(N·m3·h?1 qo /(N·m3·h?1
1# 140 287
2# 160 328
3# 170 348
4# 170 348
5# 145 298
6# 90 185
Tab.4 Fuel-oxygen composition of flame guns
Fig.3 Schematic diagram of thermal coupling interface between combustion space and melting tank
Fig.4 Iteration residuals and temperature distribution of thermal coupling simulation
Fig.5 Temperature distribution at bottom of combustion space
Fig.6 Heat flux distribution at top of melting tank
Fig.7 Simulated average furnace pressure curves along tank length direction with various batch lengths
Fig.8 Simulated main crown temperature curves along tank length direction with various batch lengths
Fig.9 Simulated temperature curves at bottom of combustion space along tank length direction with various batch lengths
Fig.10 Velocity vector distribution of flow field in flame gun plane
Fig.11 Velocity vector distribution of glass flow field in melting tank
Fig.12 Stream traces of glass flow in melting tank
Fig.13 Stream traces of glass flow of YZ plane at various position of melting tank
模拟方式 l /m h /m u /(m·s?1 κ /(m·s?1 RI
热耦合 4.1170 0.2539 1.6539×10?4 0.4735×10?4 4.6425
非热耦合 4.1170 0.2428 3.3727×10?4 0.9603×10?4 4.8279
Tab.5 Refining index of glass flow
[1]   田英良, 李俊杰, 杨宝瑛, 等 化学增强型超薄碱铝硅酸盐玻璃发展概况与展望[J]. 燕山大学学报, 2017, 41 (4): 283- 292
TIAN Ying-liang, LI Jun-jie, YANG Bao-ying, et al Development and prospect of chemically strengthened ultra-thin alkali alumina silicate glass[J]. Journal of Yanshan University, 2017, 41 (4): 283- 292
doi: 10.3969/j.issn.1007-791X.2017.04.001
[2]   唐保军, 殷海荣, 陈国平, 等 全氧燃烧玻璃熔窑热工计算与分析[J]. 陕西科技大学学报: 自然科学版, 2009, 27 (1): 41- 45
TANG Bao-jun, YIN Hai-rong, CHEN Guo-ping, et al Calculation and analysis of thermal process in oxy-fuel combustion glass melting furnace[J]. Journal of Shaanxi University of Science and Technology: Natural Science Edition, 2009, 27 (1): 41- 45
[3]   刘志付, 赵恩录, 陈福 玻璃熔窑的全氧燃烧、纯氧助燃和富氧燃烧技术[J]. 玻璃, 2010, 36 (12): 18- 20
LIU Zhi-fu, ZHAO En-lu, CHEN Fu Oxy-fuel combustion, pure oxygen combustion and oxygen enriched combustion of glass furnace[J]. Glass, 2010, 36 (12): 18- 20
[4]   DZYUZER V Y, SHVYDKII V S, KLIMYCHEV V N, et al Methods for controlling thermal performance of the glass-melting furnace[J]. Glass and Ceramics, 2005, 62 (3): 105- 108
[5]   JEBAVA M, DYRCIKOVA P, NěMEC L, et al Modelling of the controlled melt flow in a glass melting space: its melting performance and heat losses[J]. Journal of Non-crystalline Solids, 2015, 52- 63
[6]   POSSAMAI T S, OBA R, NICOLAU V D, et al Investigation and experimental measurement of an industrial melting furnace used to produce sodium silicate[J]. Applied Thermal Engineering, 2015, 207- 213
[7]   BASSO D, CRAVERO C, REVERBERI A P, et al CFD analysis of regenerative chambers for energy efficiency improvement in glass production plants[J]. Energies, 2015, 8 (8): 8945- 8961
doi: 10.3390/en8088945
[8]   JEBAVA M, NěMEC L Role of glass melt flow in container furnace examined by mathematical modelling[J]. Ceramics-silikaty, 2017, 62 (1): 1- 10
doi: 10.13168/cs.2017.0038
[9]   高华, 刘涌, 吕树欣, 等 全氧燃烧火焰空间烟道口位置变化对窑压和气流场影响的数值模拟[J]. 玻璃, 2010, 37 (6): 3- 6
GAO Hua, LIU Yong, LV Shu-xin, et al Numerical simulation of position change effect of flame space floss hole in oxyfuel combustion furnace on furnace pressure and air flow field[J]. Glass, 2010, 37 (6): 3- 6
doi: 10.3969/j.issn.1003-1987.2010.06.001
[10]   吕树欣, 高华, 刘涌, 等 全氧燃烧浮法玻璃熔窑窑压的数值模拟[J]. 能源工程, 2010, (5): 11- 14
LV Shu-xin, GAO Hua, LIU Yong, et al Numerical investigation of pressure in oxy-fuel glass furnace[J]. Energy Engineering, 2010, (5): 11- 14
doi: 10.3969/j.issn.1004-3950.2010.05.003
[11]   王昌贤, 刘洪源, 沈锦林, 等 全氧燃烧喷枪火焰空间气流场温度场的数值模拟[J]. 能源工程, 2008, (3): 4- 7
WANG Chang-xian, LIU Hong-yuan, SHEN Jin-lin, et al Numerical simulation of temperature and velocity field in all-oxygen combustion[J]. Energy Engineering, 2008, (3): 4- 7
doi: 10.3969/j.issn.1004-3950.2008.03.002
[12]   唐保军, 陈国平, 殷海荣 高碹顶玻璃熔窑全氧燃烧火焰空间的三维数值模拟[J]. 玻璃, 2009, 36 (6): 3- 7
TANG Bao-jun, CHEN Guo-ping, YIN Hai-rong Three-dimensional simulation of oxy-fuel combustion space in high crown glass furnace[J]. Glass, 2009, 36 (6): 3- 7
doi: 10.3969/j.issn.1003-1987.2009.06.001
[13]   许世清, 封福明, 刘世民 浮法熔窑内高温玻璃液中湍流诱发机制的研究[J]. 武汉理工大学学报, 2010, 32 (22): 126- 133
XU Shi-qing, FENG Fu-ming, LIU Shi-min Research on turbulence induced mechanism of the high temperature glass liquid in the float glass furnace[J]. Journal of Wuhan University of Technology, 2010, 32 (22): 126- 133
doi: 10.3963/j.issn.1671-4431.2010.22.033
[14]   邢志斌. 浮法玻璃液流搅拌与成形行为的工程仿真及验证性研究[D]. 秦皇岛: 燕山大学, 2017: 64-65.
XING Zhi-bin. Engineering simulation and verification of molten-glass stirring and forming behavior of float glass [D]. Qinhuangdao: Yanshan University, 2017: 64-65.
[15]   宋力昕, 乐军, 姜宏 池窑鼓泡对熔制玻璃质量和产量的影响[J]. 硅酸盐通报, 2003, (3): 29- 35
SONG Li-xin, YUE Jun, JIANG Hong Effect of bubbling of tank furnace on glass quality and output[J]. Bulletin of the Chinese Ceramic Society, 2003, (3): 29- 35
doi: 10.3969/j.issn.1001-1625.2003.03.008
[16]   陈淑勇, 彭寿, 马立云, 等 玻璃熔窑池底多排鼓泡技术的数值模拟[J]. 硅酸盐学报, 2020, 48 (2): 149- 153
CHEN Shu-yong, PENG Shou, MA Li-yun, et al Simulation of multi-row forced bubbling for glass furnace[J]. Journal of the Chinese Ceramic Society, 2020, 48 (2): 149- 153
[17]   陶天训, 倪晶晶, 陈淑勇, 等 玻璃配合料预热技术的理论与模拟分析[J]. 硅酸盐学报, 2018, 46 (7): 1035- 1041
TAO Tian-xun, NI Jing-jing, CHEN Shu-yong, et al Theoretical and simulated study of glass batch preheating[J]. Journal of the Chinese Ceramic Society, 2018, 46 (7): 1035- 1041
[18]   ABBASSI A, KHOSHMANESH K Numerical simulation and experimental analysis of an industrial glass melting furnace[J]. Applied Thermal Engineering, 2008, 28 (56): 450- 459
[19]   韩韬. 燃烧制度对玻璃池窑中玻璃液流动影响的数值模拟[D]. 济南: 济南大学, 2010: 45.
HAN Tao. Study on numerical simulation of combustion scheduce affects to glass flow in glass tank [D]. Jinan: University of Jinan, 2010: 45.
[20]   吕树欣, 刘涌, 宋晨路, 等 基于火焰空间与玻璃液热耦合的玻璃熔窑数值模拟[J]. 材料科学与工程学报, 2012, 30 (1): 24- 28
LV Shu-xin, LIU Yong, SONG Chen-lu, et al Computational study of glass furnace based on thermal coupling between combustion space and liquid glass pool[J]. Journal of Materials Science and Engineering, 2012, 30 (1): 24- 28
[21]   田英良, 梁新辉, 张磊, 等 高碱铝硅酸盐玻璃的超薄浮法工艺探索[J]. 武汉理工大学学报, 2010, 32 (22): 102- 105
TIAN Ying-liang, LIANG Xin-hui, ZHANG Lei, et al Exploration of ultrathin high-alkali alumino-silicate glass by float process technology[J]. Journal of Wuhan University of Technology, 2010, 32 (22): 102- 105
doi: 10.3963/j.issn.1671-4431.2010.22.027
[22]   干福熹. 无机玻璃物理性质计算和成分设计[M]. 上海: 上海科学技术出版社, 1981: 16-17.
[23]   刘洪源, 高华, 沈锦林, 等 浮法玻璃熔窑熔化池底部横向宽度对熔化池温度场影响的研究[J]. 能源工程, 2009, (6): 21- 25
LIU Hong-yuan, GAO Hua, SHEN Jin-lin, et al Numerical simulation of temperature field of melting pools with different horizontal width in the bottom of float glass furnace[J]. Energy Engineering, 2009, (6): 21- 25
doi: 10.3969/j.issn.1004-3950.2009.06.005
[24]   赵国昌, 胡桅林, 过增元, 等 玻璃池窑的数值模拟[J]. 玻璃与搪瓷, 1993, 21 (3): 15- 20
ZHAO Guo-chang, HU Wei-lin, GUO Zeng-yuan, et al The numerical simulation of glass tank furnace[J]. Glass and Enamel, 1993, 21 (3): 15- 20
[25]   吕树欣. 热耦合数值模型的研究及其在全氧燃烧玻璃熔窑中的应用[D]. 杭州: 浙江大学, 2012: 16-21.
LV Shu-xin. Study of thermal coupling model and its use in oxygen enriched glass furnace [D]. Hangzhou: Zhejiang University, 2012: 16-21.
[26]   闫兰飞. 200 t/d高铝电子玻璃熔窑电助熔技术工程仿真研究[D]. 秦皇岛: 燕山大学, 2016: 29.
YAN Lan-fei. Engineering simulation research of 200 t/d high-aluminum electronic glass in an electric boost melting furnace [D]. Qinhuangdao: Yanshan University, 2016: 29.
[27]   胡桅林, 赵国昌, 过增元 评价熔窑内玻璃液澄清过程的定量指标[J]. 玻璃与搪瓷, 1994, 22 (3): 5- 11
HU Wei-lin, ZHAO Guo-chang, GUO Zeng-yuan, et al Quantitative evaluation for reining process of glass melt in tank furnace[J]. Glass and Enamel, 1994, 22 (3): 5- 11
[28]   许世清. 浮法熔窑内整体液流特征与局部扰动机制的仿真分析研究[D]. 秦皇岛: 燕山大学, 2016: 38-47.
XU Shi-qing. Simulation analysis of the whole fluid flow characteristics and the local disturbance mechanism in the float glass furnace [D]. Qinhuangdao: Yanshan University, 2016: 38-47.
[1] Ren-yi YI,Yong WANG,Yu-dong XIE,Kai QIAO,Yu-lei ZHANG. No-load voltage of liquid metal magnetohydrodynamic power generator[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1964-1970.
[2] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[3] XIA Neng, XIE Jun, ZHANG Cheng-qian, ZHAO Peng, FU Jian-zhong. Magnetic levitation simulation and density measurement for diamagnetic materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 473-478.
[4] LI Meng-xuan, WU Jia, ZHENG Shui-ying, YING Guang-yao, LIU Shu-lian. Stability of bearing-rotor system with different bearing structures[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2239-2248.
[5] LIU Hai bin, WANG Yong, MA Peng lei, XIE Yu dong. Coupling analysis of parameters based on parallel-oscillating hydrofoils hydrokinetic turbine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 153-159.
[6] RUAN Fang, QIAN Xiao qian, ZHU Yao tai, WU Min li. Internal and external wall insulation effect on building energy efficiency with compartmental and intermittent energy consuming method[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 1-7.
[7] DU Ming-yue, TIAN Ye, JIN Nan-guo, WANG Yu-wei, JIN Xian-yu. Coupling of hygro-thermal field in early-age concrete based on cement hydration[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1410-1416.