Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 196-201    DOI: 10.3785/j.issn.1008-973X.2020.01.023
Biomedical Engineering, Chemical Engineering     
Behaviors of aerosol oil droplets on modified PAN fibrous webs
Ying-ying WEI(),Dong-yue JIANG,Qing-teng FU,Fei GUO*()
School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
Download: HTML     PDF(1524KB) HTML
Export: BibTeX | EndNote (RIS)      


The morphology and evolution of aerosol oil droplets on PAN fibrous webs and modified PAN fibrous webs was analyzed based on the filtration treatment of aerosol suspending oil droplets in the atmosphere. The experimental results show that aerosol oil droplets exhibit different structures and evolution behaviors on fibrous webs with different surface energy. Aerosol oil droplets form axisymmetric structures on PAN fibers and non-axisymmetric structures on modified PAN fibers. Non-axisymmetric structure of aerosol oil droplets on modified PAN fibers switches to axisymmetric structure during the growth of aerosol oil droplets on the fibers. The final structure of aerosol oil droplets on the modified PAN fibers and PAN fibers do not form the liquid film on the fibers, and form large axisymmetric aerosol oil droplets. The pressure drop and the liquid entry pressure of the fibrous membrane were measured. Results show that modified PAN fibrous membrane can prevent aerosol oil droplets from infiltrating compared to original PAN fibrous membranes and have the function of blocking aerosol oil droplets from invading the fibrous membranes.

Key wordselectrospinning      PAN fibrous membrane      surface modification      PM2.5      aerosol oil droplet     
Received: 28 November 2018      Published: 05 January 2020
CLC:  TQ 028  
  TQ 342  
Corresponding Authors: Fei GUO     E-mail:;
Cite this article:

Ying-ying WEI,Dong-yue JIANG,Qing-teng FU,Fei GUO. Behaviors of aerosol oil droplets on modified PAN fibrous webs. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 196-201.

URL:     OR


针对大气环境中的气溶胶悬浮油滴的过滤式处理,以PAN纤维膜为实验介质,研究气溶胶油滴在PAN纤维膜及改性处理后的PAN纤维膜上的富集规律和演变的行为. 实验结果表明,油滴在不同表面能的纤维上的结构不同. 油滴在PAN纤维上形成轴对称结构,在改性PAN纤维上形成非轴对称结构. 随着油滴在纤维上的富集,改性PAN纤维上的非轴对称油滴逐渐转变为轴对称油滴. 油滴在改性PAN纤维和PAN纤维上的最终形态都不能铺展形成液膜,而是形成轴对称的油滴. 通过测量纤维膜压力降和液体穿透压可以发现,改性PAN纤维膜相比原始PAN纤维膜,能够避免油滴浸润,具有阻隔油滴侵入纤维膜内部的作用.

关键词: 静电纺丝,  PAN纤维膜,  表面改性,  PM2.5,  气溶胶油滴 
U/kV n/
正电 负电
11.5 0.02 +18 ?4 40 20 60±2 0.17±0.02
14 0.02 +19 ?4 40 20 64±2 0.32±0.03
18 0.02 +20 ?4 40 20 64±4 0.58±0.01
Tab.1 Electrospinning processing parameters and fibrous membrane parameters
Fig.1 Schematic diagram of initiated chemical vapor deposition apparatus
Fig.2 Schematic diagram of pressure drop of fibrous membranes testing apparatus
Fig.3 Optical microscope images
Fig.4 Microscopy images of aerosol oil droplets captured by different fibers
Fig.5 Oil droplets images and schematic diagram after long time of aerosol oil droplets capture
Fig.6 Experimental data of pressure drop and liquid entry pressure of fibrous membranes
[1]   LIN Y, ZOU J, YANG W, et al A Review of recent advances in research on PM2.5 in China [J]. International Journal of Environmental Research and Public Health, 2018, 15 (3): 438
doi: 10.3390/ijerph15030438
[2]   LU F, XU D, CHENG Y, et al Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population [J]. Environmental Research, 2015, 136: 196- 204
doi: 10.1016/j.envres.2014.06.029
[3]   杨洪斌, 邹旭东, 汪宏宇, 等 大气环境中PM2.5的研究进展与展望 [J]. 气象与环境学报, 2012, 28 (3): 77- 82
YANG Hong-bin, ZOU Xu-dong, WANG Hong-yu, et al Study progress on PM2.5 in atmospheric environment [J]. Journal of Meteorology and Environment, 2012, 28 (3): 77- 82
doi: 10.3969/j.issn.1673-503X.2012.03.014
[4]   HOEK G, KRISHNAN R M, BEELEN R, et al Long-term air pollution exposure and cardio-respiratory mortality: a review[J]. Environmental Health, 2013, 12 (1): 43
doi: 10.1186/1476-069X-12-43
[5]   BETHA R, BEHERA S N, BALASUBRAMANIAN R 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk[J]. Environmental Science and Technology, 2014, 48 (8): 4327- 4335
doi: 10.1021/es405533d
[6]   HINDS W C Aerosol technology: properties, behavior, and measurement of airborne particles[J]. Journal of Aerosol Science, 1999, 31 (9): 1121- 1122
[7]   杜晓明, 徐忠厚, 韩春媚, 等 静电纺丝过氯乙烯纳米纤维膜对PM10去除效果的研究 [J]. 环境科学研究, 2006, 19 (1): 46- 48
DU Xiao-ming, XU Zhong-hou, HAN Chun-mei, et al Research on purification effect of electrospun chlorinated PVC nanofibrous membrane for PM10[J]. Research of Environmental Sciences, 2006, 19 (1): 46- 48
doi: 10.3321/j.issn:1001-6929.2006.01.012
[8]   梁斌, 王建强, 潘凯, 等 静电纺丝纳米纤维在膜分离中的研究进展[J]. 高分子通报, 2013, (4): 99- 108
LIANG Bin, WANG Jian-qiang, PAN Kai, et al Development of electrospinning nanofibers for membrane separation[J]. Polymer Bulletin, 2013, (4): 99- 108
[9]   HUNG C H, LEUNG W F, SEPPUR J, et al Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime[J]. Separation and Purification Technology, 2011, 79 (1): 34- 42
doi: 10.1016/j.seppur.2011.03.008
[10]   ZHANG R, LIU C, HSU P C, et al Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources[J]. Nano Letters, 2016, 16 (6): 3642- 3649
doi: 10.1021/acs.nanolett.6b00771
[11]   LIU C, HSU P C, LEE H W, et al Transparent air filter for high-efficiency PM2.5 capture [J]. Nature Communications, 2015, 6 (6205): 1- 9
[12]   LIU K, XIAO Z, MA P, et al Large scale poly(vinyl alcohol-co-ethylene)/TiO2 hybrid nanofibrous filters with efficient fine particle filtration and repetitive-use performance [J]. RSC Advances, 2015, 5 (107): 87924- 87931
doi: 10.1039/C5RA15620C
[13]   WANG N, SI Y, WANG N, et al Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration[J]. Separation and Purification Technology, 2014, 126 (15): 44- 51
[14]   JI L, SAQUING C, KHAN S A, et al Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers[J]. Nanotechnology, 2008, 19 (8): 85605
doi: 10.1088/0957-4484/19/8/085605
[15]   GUPTA M, GLEASON K K Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl Acrylate) thin films[J]. Langmuir, 2006, 22 (24): 10047- 10052
doi: 10.1021/la061904m
[16]   ZHANG R, LIU B, YANG A, et al In situ investigation on the nanoscale capture and evolution of aerosols on nanofibers[J]. Nano Letters, 2018, 18 (2): 1130- 1138
doi: 10.1021/acs.nanolett.7b04673
[17]   ZHENG Y, BAI H, HUANG Z, et al Directional water collection on wetted spider silk[J]. Nature, 2010, 463 (7281): 640- 643
doi: 10.1038/nature08729
[18]   CONG S, LIU X H, GUO F Membrane distillation using surface modified multilayer porous ceramics[J]. International Journal of Heat and Mass Transfer, 2019, 129: 764- 772
doi: 10.1016/j.ijheatmasstransfer.2018.10.011
[19]   GUO F, SERVI A, LIU A, et al Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition[J]. ACS Applied Materials and Interfaces, 2015, 7 (15): 8225- 8232
doi: 10.1021/acsami.5b01197
[20]   郭飞, 从硕, 董建华, 等. 材料微观表面共型镀膜系统: 201721208274.5[P]. 2018-05-08.
[21]   CASSIE A B D, BAXTER S Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40 (1): 546- 551
[22]   CAI J, LIU X, ZHAO Y, et al Membrane desalination using surface fluorination treated electrospun polyacrylonitrile membranes with nonwoven structure and quasi-parallel fibrous structure[J]. Desalination, 2018, 429: 70- 75
doi: 10.1016/j.desal.2017.12.019
[23]   GENNES P G D, BROCHARD-WYART F, QUéRé D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves [M]. New York: Springer, 2004: 1700.
[1] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[2] Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.
[3] ZHANG Wei, HU Liang, XIAO Li-dan, HU Zhao-ying, WANG Ping. The application of SAM technology in biocompatibility
design of cell-based biosensor
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 345-350.