Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 202-212    DOI: 10.3785/j.issn.1008-973X.2020.01.024
Aerospace Technology     
Thermal sensitivity factors analysis of stratospheric airships
Chen CHENG(),Xiao-liang WANG*()
School of Aeronautics and Astronautics, Shanghai Jiaotong University, Shanghai 200240, China
Download: HTML     PDF(5001KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A thermal characteristics model of the airship was established and the main thermal influence factors were analyzed by taking stratosphere airship as the research object. A complete thermal model of the stratospheric airship was established with the finite split method. The shape was modeled and the surface was discretized in order to make the established thermal model applicable to different types of airships. The distribution parameter method and the lumped parameter method were used to calculate the thermal characteristics of the skin cell and the internal filling gas. The reliability and effectiveness of the established model and its solution method were verified by relevant experimental data. The changes in the surface temperature of the airship and the temperature of the internal filling gas under the influence of 8 different thermal influence factors were calculated, and the qualitative and quantitative effects of each factor were analyzed. The conditions for extreme temperature of the airship skin were summarized. The effects and laws of different heat sources on the thermal characteristics of airships were compared, and a simplified part of the thermal characteristics model of airships was given.



Key wordsairship      sensitivity factors      thermal characteristics      stratosphere     
Received: 20 November 2018      Published: 05 January 2020
CLC:  V 274  
Corresponding Authors: Xiao-liang WANG     E-mail: chen.cheng.sjtu@foxmail.com;wangxiaoliang@sjtu.edu
Cite this article:

Chen CHENG,Xiao-liang WANG. Thermal sensitivity factors analysis of stratospheric airships. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 202-212.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.024     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/202


平流层飞艇热敏感因素分析

以平流层飞艇为研究对象,建立飞艇热特性模型并分析主要的热影响因素. 通过有限拆分法,建立完整的平流层飞艇热特性模型. 为了使建立的热模型能够适用于不同类型的飞艇,将其外形建模和表面离散化处理,分别采用分布参数法和集总参数法,对蒙皮单元和内部填充气体进行热特性数值计算. 通过相关试验数据对建立的模型及其求解方法的可靠有效性进行验证. 分别计算8种不同热影响因素作用下飞艇表面蒙皮温度及内部填充气体温度的变化,对每种因素的影响规律进行定性和定量的分析,得到飞艇热特性的主要敏感因素及不敏感因素,归纳出飞艇蒙皮出现极值温度的条件. 比较不同热源对飞艇热特性的影响和规律,给出飞艇热特性模型中的可简化部分.


关键词: 飞艇,  影响因素,  热特性,  平流层 
Fig.1 Stratospheric airship thermal environment
Fig.2 Relationship between demarcation point of laminar-turbulent flow and Rayleigh number
Fig.3 Natural external convection cross-section parameters
换热方式 外部自然对流换热系数 努赛尔数
层流换热 ${h_{ {\rm{free\_ex} } } } = { {N{u_{\rm{D} } } \cdot { {{k} }_{ {\rm{air} } } }} / D}$ $N{u_{{D} } } = { {{C} }_{\rm{c} } } \cdot Ra_{{D} }^{ {1 / 4} }$
湍流换热 ${h_{ {\rm{free\_ex} } } } = { {N{u_x} \cdot { {{k} }_{ {\rm{air} } } }} / x}$ $N{u_x} = { {{C} }_{\rm{t} } } \cdot A(\theta ) \cdot Ra_x^{ {1 / 3} }$
Tab.1 Heat transfer coefficient and Nusselt number of laminar and turbulent convection
Fig.4 Flow chart of thermal analysis of airships
Fig.5 Thermal characteristics of airship in 48 h under different grid numbers
Fig.6 Thermal characteristics of airship in 48 h under different calculation time steps
基本参数 参数值 基本参数 参数值
飞艇总长 1.42 m 太阳辐射热流 972 W/m2
中间圆柱直径 0.47 m 蒙皮发射率 0.81
蒙皮厚度 0.1 mm 太阳吸收比 0.45
Tab.2 Basic geometric parameters in Li Defu's experiment
Fig.7 Comparison of calculated value and experimental value of temperature of internal filling gas
基本参数 参数值 基本参数 参数值
飞行高度 20 000 m 表面单元个数 4 666
飞艇长度 50 m 飞艇最大直径 16 m
飞艇体积 6 704.5 蒙皮太阳辐射吸收率 0.33
蒙皮比热容 3 600 J/(kg·K) 蒙皮长波辐射吸收率 0.33
蒙皮发射率 0.8 初始时刻蒙皮温度 216.5 K
地球发射率 0.92 初始时刻浮升气体温度 216.5 K
Tab.3 Basic input parameters in numerical calculation of thermal sensitivity factors analysis of stratospheric airships
Fig.8 Change of solar angles in 48 h in different seasons
季节 最大温度 最大温度时段 最小温度 最小温度时段
289.86 K 9 h-15 h 193.3 K 19 h-5 h
285.41 K 9 h-15 h 193.3 K 19 h-5 h
289.12 K 9 h-15 h 193.3 K 19 h-5 h
289.86 K 9 h-15 h 193.3 K 19 h-5 h
Tab.4 Thermal characteristics of skin in different seasons
Fig.9  ${T_{{\rm{gas}}}}$ in 48 h in different seasons
Fig.10  ${T_{{\rm{gas}}}}$ in 48 h under different cloud cover levels
Fig.11 Relationship of ${T_{\rm{skin}}^{{\max }}}$ and cloud cover level
Fig.12  ${T_{{\rm{gas}}}}$ in 48 h at different sizes of airship
Fig.13 Relationship between time when inner gas (helium) reaches maximum temperature and size of airship
Fig.14 Relationship between ${T_{\rm{skin}}^{\min }}$ and size of airship
Fig.15  ${T_{{\rm{gas}}}}$ in 48 h at different airspeed
Fig.16 Relationship between airspeeds and $\Delta {T_{{\rm{gas}}}}$ between day and night
Fig.17 Relationship between skin temperature and airspeeds
Fig.18  ${T_{{\rm{gas}}}}$ in 48 h at different latitude
Fig.19  ${T_{{\rm{gas}}}}$ in 48 h at different longitude
Fig.20  ${T_{{\rm{gas}}}}$ in 48 h with different skin thickness
Fig.21  ${T_{{\rm{gas}}}}$ in 48 h with different type of inner gas
Fig.22 Percentage of contribution of heat source of airship
Fig.23  ${T_{{\rm{gas}}}}$ of both simplified model and full model
Fig.24 Main heat sources and skin temperature at 12 h in spring
[1]   STEFAN K. Thermal effects on a high altitude airship [C]// Lighter-than Air Conference. California: AIAA, 1983: 94-100.
[2]   方贤德, 王伟志, 李小建 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28 (2): 5- 9
FANG Xian-de, WANG Wei-zhi, LI Xiao-jian Preliminary discussion on thermal simulation of stratospheric airship[J]. Space Return and Remote Sensing, 2007, 28 (2): 5- 9
doi: 10.3969/j.issn.1009-8518.2007.02.002
[3]   徐向华, 程雪涛, 梁新刚 平流层飞艇的热数值分析[J]. 清华大学学报: 自然科学版, 2009, 49 (11): 1848- 1851
XU Xiang-hua, CHENG Xue-tao, LIANG Xin-gang Thermal numerical analysis of stratospheric aerostats[J]. Journal of Tsinghua University: Natural Science Edition, 2009, 49 (11): 1848- 1851
[4]   XIA X, LI D, SUN C, et al Transient thermal behavior of stratospheric balloons at float conditions[J]. Advances in Space Research, 2010, 46 (9): 1184- 1190
doi: 10.1016/j.asr.2010.06.016
[5]   YAO W, LU X, WANG C, et al A heat transient model for the thermal behavior prediction of stratospheric airships[J]. Applied Thermal Engineering, 2014, 70: 380- 387
doi: 10.1016/j.applthermaleng.2014.05.050
[6]   CARLSON L A, HORN W J New thermal and trajectory model for high-altitude balloons[J]. AIAA Paper, 1981, 20 (6): 500- 507
[7]   FARLEY R E. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons [C]// AIAA 5th ATIO and 16th Lighter-Than-Air System Technology and Balloon Systems Conferences. Arlington, Virginia: AIAA, 2005.
[8]   DAI Q, FANG X, LI X, et al Performance simulation of high altitude scientific balloons[J]. Advances in Space Research, 2012, 49 (6): 1045- 1052
doi: 10.1016/j.asr.2011.12.026
[9]   ZHENG W, ZHANG X, MA R, et al A simplified thermal model and comparison analysis for a stratospheric lighter-than-air vehicle[J]. Journal of Heat Transfer, 2018, 140 (2): 022801
doi: 10.1115/1.4037194
[10]   GARDE G. Thermal modeling of NASA's super pressure pumpkin balloon [C]// AIAA Balloon Systems Conference. Williamsburg, Virginia, USA: AIAA, 2007.
[11]   刘东旭, 杨永强, 吕明云, 等 蒙皮热辐射特性对平流层飞艇氦气温度影响[J]. 北京航空航天大学学报, 2010, 36 (7): 836- 840
LIU Dong-xu, YANG Yong-qiang, LV Ming-yun, et al Effect of skin heat radiation characteristics on helium temperature of stratospheric aerostats[J]. Journal of Beijing Aerospace University, 2010, 36 (7): 836- 840
[12]   刘婷婷, 麻震宇, 杨希祥, 等 太阳电池对平流层飞艇热特性的影响分析[J]. 宇航学报, 2018, 39 (1): 35- 42
LIU Ting-ting, MA Zhen-yu, YANG Xi-xiang, et al Analysis of the influence of solar cells on the thermal characteristics of stratospheric airship[J]. Journal of Astronautics, 2018, 39 (1): 35- 42
[13]   戴秋敏. 飞艇热环境与热特性研究[D]. 南京: 南京航空航天大学, 2014.
DAI Qiu-min. Study on thermal environment and thermal characteristics of aerostats [D]. Nanjing: Nanjing Aerospace University, 2014.
[14]   HARTMANN D L. Global physical climatology [M]. [S. l.]: Academic Press, 1994.
[15]   李德富. 平流层飞艇的热特性及其动力学效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
LI De-fu. Thermal characteristics and dynamic effects of stratospheric aerostats [D]. Harbin: Harbin Institute of Technology, 2011.
[16]   ROHSENOW W M. Handbook of heat transfer fundamentals [M]. 2nd ed. New York: McGraw-Hill, 1985.
[17]   杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2007.
[18]   RAITHBY G D, HOLLANDS K G T A general method of obtaining approximate solutions to laminar and turbulent free convection problems[J]. Advances in Heat Transfer, 1975, 11 (08): 265- 315
[19]   李小建. 临近空间飞艇热-结构耦合数值模拟研究[D]. 南京: 南京航空航天大学, 2013.
LI Xiao-jian. Numerical simulation of thermal-structure coupling of spacecraft near space [D]. Nanjing: Nanjing Aerospace University, 2013.
[20]   CHEN K K, THYSON N A Extension of Emmons spot theory to flow on blunt bodies[J]. AIAA Journal, 2012, 9 (5): 821- 825
[1] ZHENG Xue-ke, WANG Xiao-liang. Stratospheric airship control considering propeller dynamic model[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1428-1436.
[2] DENG Xiao-lei,FU Jian-zhong,SHEN Hong-yao, CHEN Zi-chen. Thermal equilibrium test for multi spindle system of precision CNC machine tool[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1646-1653.
[3] DENG Xiao-lei, FU Jian-zhong, HE Yong, CHEN Zi-chen. Multi-field coupling thermal characteristics analysis for spindle system of precision CNC machine tool[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1863-1870.