A comprehensive numerical model was established based on the Navier-Stokes equations, KE rough contact mechanics and heat transfer theory with grooves consideration in order to analyze the effect of the operating conditions on the engagement behavior of wet clutches. The orthogonal experiments were conducted to analyze the effect of the operating parameters such as applied pressure, the temperature of automatic transmission fluid (ATF), the relative rotation speed, the permeability and the grooves based on the independently developed experimental setup. Results show that the applied pressure not only affects the engagement time, but also the engagement torque. The first torque judder that appears at the moment of the piston touching the plates depends on the stability of the applied pressure. The second torque judder that appears at the end of the engagement process is caused by the difference of dynamic and static friction coefficient. The increase of the temperature of ATF makes the dynamic viscosity decrease, which delays the rough contact and engagement process. The hydraulic torque decreases accordingly. The higher the relative rotation speed is, the longer the engagement time is. The higher the permeability of the friction material is, the faster the decrease of the film thickness and the engagement response is. The larger the groove width is, the smaller the engagement torque is, the longer the engagement time is. The larger the initial film thickness is, the smaller the shearing torque is.
Chen-long YANG,Peng-hui WU,Xiao-bo SHANG,Zhao-shuai WANG. Simulation and experimental study of engagement process with groove consideration. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1225-1236.
Fig.3Rough contact analysis model of friction plates
Fig.4Schematic diagram of radial grooves of wet clutches
参数
数值
参数
数值
${R_{\rm{i}}}$
0.378 m
${E_2}$
2.06×109 MPa
${R_{\rm{o}}}$
0.421 m
${\nu _1}$
0.3
$d$
0.5 mm
${\nu _2}$
0.4
${E_1}$
1.059×108 MPa
–
–
Tab.1Parameter list of test plates of large size wet clutch
参数
数值
参数
数值
$\mu $
0.086 Pa·s
B
0.2 mm
${h_{\rm{o}}}$
2.54×10-5
${\sigma _{\rm{s}}}$
1.012×10-6
${h_{\rm{g}}}$
4×10-4
${\sigma _{\rm{f}}}$
8.32×10-6
$\rho $
850 kg/m3
–
–
Tab.2Parameter list of operating conditions of wet clutches in simulation and experiments of dynamic engagement
Fig.5Test method of infrared temperature sensors
Fig.6Experimental results of temperature distribution during engagement process of wet clutches
Fig.7Simulated results of temperature distribution during engagement process of wet clutches
Fig.8Automatic test system of engagement performance of wet clutches
Fig.9Schematic diagram of automatic test system for wet clutches
Fig.10Cooling and lubrication system of wet clutches
Fig.11Experimental results of applied pressure of wet clutches (1.1,1.3和1.5 MPa)
Fig.12Simulated results of engagement performance with different applied pressures (1.1,1.3和1.5 MPa)
Fig.13Experimental results of engagement process with different applied pressures (1.1,1.3和1.5 MPa)
Fig.14Experimental curves of engagement process with different PID parameters
Fig.15Experimental curves of relationship between applied pressure and engagement torque
Fig.16Simulated curves of engagement process with different temperature of lubrication oil (65 °C,50 °C and 35 °C)
Fig.17Experimental curves of engagement process with different of lubrication oil (65,50 and 35 °C)
Fig.18Experimental curves of engagement process with different initial rotation speeds
Fig.19Simulated curves of engagement process with different initial rotation speeds
Fig.20Experimental curves of engagement process with different initial rotation speeds
Fig.21Experimental curves of instantaneous sliding power with different initial rotation speeds
Fig.22Simulated curves of film thickness with different permeability
Fig.23Simulated curves of engagement process with different permeability
Fig.24Experimental curves of engagement process with different permeability
Fig.25Simulated curves of engagement torque with different groove widths
Fig.26Experimental curves of engagement performance with different groove widths
Fig.27Experimental curves of hydraulic viscous torque with fixed clearance
[1]
张志刚, 周晓军, 沈路, 等 湿式离合器动态接合特性的仿真与试验[J]. 中国公路学报, 2010, 23 (03): 115- 120 ZHANG Zhi-gang, ZHOU Xiao-jun, SHEN Lu, et al Simulation and experiment on dynamic engagement characteristics of wet clutch[J]. China Journal of Highway and Transport, 2010, 23 (03): 115- 120
doi: 10.3969/j.issn.1001-7372.2010.03.018
[2]
张志刚. 关于湿式离合器几个工作特性研究[D]. 杭州: 浙江大学, 2010.
[3]
陈漫, 马彪, 李国强, 等 多片湿式离合器接合过程转矩特性研究[J]. 华中科技大学学报: 自然科学版, 2014, 42 (5): 34- 39 CHEN Man, MA Biao, LI Guo-qiang, et al Study on torque characteristics of multi-plate wet clutches during engagement[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42 (5): 34- 39
[4]
马彪, 李国强, 李和言, 等 基于改进平均流量模型的离合器接合特性仿真[J]. 吉林大学学报: 工学版, 2014, 44 (6): 1557- 1563 MA Biao, LI Guo-qiang, LI He-yan, et al Simulation of wet clutch engagement characteristics based on advanced average flow model[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (6): 1557- 1563
[5]
LI W, HUANG J, FEI J, et al. Simulation of the engagement of carbon fabric wet clutch: analytical and experimental comparison[J]. Tribology International, 2015, 90: 502-508.
[6]
LI M, KHONSARI M M, MCCARTHY D M C, et al. Parametric analysis for a paper-based wet clutch with groove consideration[J]. Tribology International, 2014, 80: 222-233.
[7]
胡宏伟, 王泽湘, 张志刚, 等 湿式离合器接合过程中瞬态温度场的仿真[J]. 中国科技论文, 2015, 10 (04): 467- 470 HU Hong-wei, WANG Ze-xiang, ZHANG Zhi-gang, et al Simulation of transient temperature field of wet clutch engagement[J]. China Sciencepaper, 2015, 10 (04): 467- 470
doi: 10.3969/j.issn.2095-2783.2015.04.020
[8]
JANG J Y, KHONSARI M M Thermal characteristics of a wet clutch[J]. Journal of Tribology-Transactions of the ASME, 1999, 121 (3): 610- 617
doi: 10.1115/1.2834111
[9]
PATIR N, CHENG H S Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology-Transactions of the ASME, 1978, 100 (1): 12- 17
doi: 10.1115/1.3453103
[10]
LI W, HUANG J, FEI J, et al Study on tribological properties as a function of operating conditions for carbon fabric wet clutch[J]. Tribology International, 2016, 94: 428- 436
doi: 10.1016/j.triboint.2015.10.015
[11]
GORDON S. BEAVERS, DANIEL D. JOSEPH boundary conditions at naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30 (01): 197- 207
doi: 10.1017/S0022112067001375
[12]
GREENWOOD J A, WILLIAMSON J B P Contact of nominally flat surfaces[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295 (1442): 300- 319
doi: 10.1098/rspa.1966.0242
[13]
于向军, 王国强, 王继新, 等 基于接触边界条件的球磨机应力分析及试验[J]. 吉林大学学报: 工学版, 2009, 39 (2): 372- 377 YU Xiang-jun, WANG Guo-qiang, WANG Ji-xin, et al Stress analysis and test of ball mill based on contact boundary conditions[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39 (2): 372- 377
[14]
SEPEHRI A, FARHANG K On elastic interaction of nominally flat rough surfaces[J]. Journal of Tribology, 2007, 130 (1): 11014
[15]
KOGUT L, ETSION I A finite element based elastic-plastic model for the contact of rough surfaces[J]. Tribology Transactions, 2003, 46 (3): 383- 390
doi: 10.1080/10402000308982641
[16]
高晓敏, 张协平, 吴凡, 等 摩擦片表面沟槽对离合器动态特性影响的研究[J]. 传动技术, 2001, 2001 (03): 10- 13 GAO Xiao-min, ZHANG Xie-ping, WU Fan, et al Research of the friction disk surface groove for influence on the clutch dynamic characteristic[J]. Transmission Technology, 2001, 2001 (03): 10- 13
doi: 10.3969/j.issn.1006-8244.2001.03.003
[17]
王晓燕, 李杰, 张志凯, 等 离合器摩擦副摩滑过程轴向振动特性研究[J]. 振动与冲击, 2017, 36 (04): 81- 87 WANG Xiao-yan, LI Jie, ZHANG Zhi-kai, et al Axial vibration characteristics of friction disks of clutch on sliding[J]. Journal of Vibration and Shock, 2017, 36 (04): 81- 87
[18]
廖湘平, 龚国芳, 孙辰晨, 等 基于AMESim的液粘调速离合器动态接合特性研究[J]. 农业机械学报, 2016, 47 (06): 324- 332 LIAO Xiang-ping, GONG Guo-fang, SUN Chen-chen, et al Dynamic engagement performance of hydro-viscous clutch based on AMESim[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47 (06): 324- 332
[19]
ZHANG Z, SHI X, GUO D Dynamic temperature rise mechanism and some controlling factors of wet clutch engagement[J]. Mathematical Problems in Engineering, 2016, 2016 (05): 1- 12
[20]
赵家昕, 马彪, 李和言, 等 湿式离合器接合过程中的热弹性稳定性[J]. 吉林大学学报: 工学版, 2015, 45 (01): 22- 28 ZHAO Jia-xin, MA Biao, LI He-yan, et al Thermoelastic stability of wet clutches during engaging process[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45 (01): 22- 28
[21]
CUI J, WANG C, XIE F, et al Numerical investigation on transient thermal behavior of multidisk friction pairs in hydro-viscous drive[J]. Applied Thermal Engineering, 2014, 67 (1/2): 409- 422
[22]
IQBAL S, AL-BENDER F, OMPUSUNGGU A P, et al. Modeling and analysis of wet friction clutch engagement dynamics[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 420-436.
[23]
HOLGERSON M Apparatus for measurement of engagement characteristics of a wet clutch[J]. Wear, 1997, 213 (1/2): 140- 147
[24]
LI T, HUANG Y, LIN J Studies on centrifugal clutch judder behavior and the design of frictional lining materials[J]. Mechanical Systems and Signal Processing, 2016, 66-67: 811- 828
doi: 10.1016/j.ymssp.2015.06.010
[25]
彭建鑫, 金辉, 陈慧岩 基于最优化理论的离合器接合曲线研究[J]. 北京理工大学学报, 2009, 29 (11): 964- 967 PENG Jian-xin, JIN Hui, CHEN Hui-yan Engagement curve of clutch based on optimization theory[J]. Transactions of Beijing Institute of Technology, 2009, 29 (11): 964- 967
[26]
王立勇, 李乐, 李和言 基于有限元法的湿式离合器摩擦界面温度场变化过程分析[J]. 润滑与密封, 2017, 42 (1): 15- 26 WANG Li-yong, LI Le, LI He-yan Study on temperature field variation process of friction interface of wet clutch based on finite element method[J]. Lubrication Engineering, 2017, 42 (1): 15- 26
doi: 10.3969/j.issn.0254-0150.2017.01.003
[27]
胡宏伟, 周晓军, 庞茂, 等 基于B样条小波的离合器温度场有限元分析[J]. 浙江大学学报: 工学版, 2009, 43 (01): 143- 147 HU Hong-wei, ZHOU Xiao-jun, PANG Mao, et al Finite element analysis for temperature field of clutches based on B-spline wavelet[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (01): 143- 147
[28]
MENG F, SHI P, KARIMI H R, et al Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 491- 503
doi: 10.1016/j.ymssp.2015.06.025