Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1225-1236    DOI: 10.3785/j.issn.1008-973X.2019.07.001
Mechanical and Energy     
Simulation and experimental study of engagement process with groove consideration
Chen-long YANG(),Peng-hui WU(),Xiao-bo SHANG,Zhao-shuai WANG
College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(3693KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A comprehensive numerical model was established based on the Navier-Stokes equations, KE rough contact mechanics and heat transfer theory with grooves consideration in order to analyze the effect of the operating conditions on the engagement behavior of wet clutches. The orthogonal experiments were conducted to analyze the effect of the operating parameters such as applied pressure, the temperature of automatic transmission fluid (ATF), the relative rotation speed, the permeability and the grooves based on the independently developed experimental setup. Results show that the applied pressure not only affects the engagement time, but also the engagement torque. The first torque judder that appears at the moment of the piston touching the plates depends on the stability of the applied pressure. The second torque judder that appears at the end of the engagement process is caused by the difference of dynamic and static friction coefficient. The increase of the temperature of ATF makes the dynamic viscosity decrease, which delays the rough contact and engagement process. The hydraulic torque decreases accordingly. The higher the relative rotation speed is, the longer the engagement time is. The higher the permeability of the friction material is, the faster the decrease of the film thickness and the engagement response is. The larger the groove width is, the smaller the engagement torque is, the longer the engagement time is. The larger the initial film thickness is, the smaller the shearing torque is.



Key wordswet clutch      engagement behavior      rough contact      heat transfer      torque judder     
Received: 22 June 2018      Published: 25 June 2019
CLC:  U 463  
Cite this article:

Chen-long YANG,Peng-hui WU,Xiao-bo SHANG,Zhao-shuai WANG. Simulation and experimental study of engagement process with groove consideration. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1225-1236.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.001     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1225


含沟槽湿式离合器接合特性数值与试验研究

为了研究工况参数对湿式离合器接合特性的影响规律,基于Navier-Stokes方程、KE粗糙接触理论和传热理论,针对含沟槽湿式离合器建立接合特性综合数值模型. 利用自主研制的离合器试验装置,针对接合压力、润滑油(ATF)温度、相对转速、渗透性和沟槽等影响因素进行正交试验. 结果表明,接合压力不仅影响接合时间且对扭矩有影响,压盘接触瞬间的扭矩抖动取决于接合压力稳定性,接合完成瞬间的扭矩抖动是由动静摩擦系数差异造成的;润滑油温升高,黏度降低使粗糙峰接触延迟造成接合时间增长,接合扭矩减小;转速越高,接合时间越长;渗透性越高,油膜厚度下降越快,接合响应速度越快;沟槽宽度越大,接合扭矩的幅值越小,接合时间越长. 初始油膜厚度越大,接合初始阶段的油膜剪切扭矩越小.


关键词: 湿式离合器,  接合特性,  粗糙接触,  传热,  扭矩抖动 
Fig.1 Schematic diagram of wet clutches
Fig.2 Schematic diagram of average film thickness
Fig.3 Rough contact analysis model of friction plates
Fig.4 Schematic diagram of radial grooves of wet clutches
参数 数值 参数 数值
${R_{\rm{i}}}$ 0.378 m ${E_2}$ 2.06×109 MPa
${R_{\rm{o}}}$ 0.421 m ${\nu _1}$ 0.3
$d$ 0.5 mm ${\nu _2}$ 0.4
${E_1}$ 1.059×108 MPa
Tab.1 Parameter list of test plates of large size wet clutch
参数 数值 参数 数值
$\mu $ 0.086 Pa·s B 0.2 mm
${h_{\rm{o}}}$ 2.54×10-5 ${\sigma _{\rm{s}}}$ 1.012×10-6
${h_{\rm{g}}}$ 4×10-4 ${\sigma _{\rm{f}}}$ 8.32×10-6
$\rho $ 850 kg/m3
Tab.2 Parameter list of operating conditions of wet clutches in simulation and experiments of dynamic engagement
Fig.5 Test method of infrared temperature sensors
Fig.6 Experimental results of temperature distribution during engagement process of wet clutches
Fig.7 Simulated results of temperature distribution during engagement process of wet clutches
Fig.8 Automatic test system of engagement performance of wet clutches
Fig.9 Schematic diagram of automatic test system for wet clutches
Fig.10 Cooling and lubrication system of wet clutches
Fig.11 Experimental results of applied pressure of wet clutches (1.1,1.3和1.5 MPa)
Fig.12 Simulated results of engagement performance with different applied pressures (1.1,1.3和1.5 MPa)
Fig.13 Experimental results of engagement process with different applied pressures (1.1,1.3和1.5 MPa)
Fig.14 Experimental curves of engagement process with different PID parameters
Fig.15 Experimental curves of relationship between applied pressure and engagement torque
Fig.16 Simulated curves of engagement process with different temperature of lubrication oil (65 °C,50 °C and 35 °C)
Fig.17 Experimental curves of engagement process with different of lubrication oil (65,50 and 35 °C)
Fig.18 Experimental curves of engagement process with different initial rotation speeds
Fig.19 Simulated curves of engagement process with different initial rotation speeds
Fig.20 Experimental curves of engagement process with different initial rotation speeds
Fig.21 Experimental curves of instantaneous sliding power with different initial rotation speeds
Fig.22 Simulated curves of film thickness with different permeability
Fig.23 Simulated curves of engagement process with different permeability
Fig.24 Experimental curves of engagement process with different permeability
Fig.25 Simulated curves of engagement torque with different groove widths
Fig.26 Experimental curves of engagement performance with different groove widths
Fig.27 Experimental curves of hydraulic viscous torque with fixed clearance
[1]   张志刚, 周晓军, 沈路, 等 湿式离合器动态接合特性的仿真与试验[J]. 中国公路学报, 2010, 23 (03): 115- 120
ZHANG Zhi-gang, ZHOU Xiao-jun, SHEN Lu, et al Simulation and experiment on dynamic engagement characteristics of wet clutch[J]. China Journal of Highway and Transport, 2010, 23 (03): 115- 120
doi: 10.3969/j.issn.1001-7372.2010.03.018
[2]   张志刚. 关于湿式离合器几个工作特性研究[D]. 杭州: 浙江大学, 2010.
[3]   陈漫, 马彪, 李国强, 等 多片湿式离合器接合过程转矩特性研究[J]. 华中科技大学学报: 自然科学版, 2014, 42 (5): 34- 39
CHEN Man, MA Biao, LI Guo-qiang, et al Study on torque characteristics of multi-plate wet clutches during engagement[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42 (5): 34- 39
[4]   马彪, 李国强, 李和言, 等 基于改进平均流量模型的离合器接合特性仿真[J]. 吉林大学学报: 工学版, 2014, 44 (6): 1557- 1563
MA Biao, LI Guo-qiang, LI He-yan, et al Simulation of wet clutch engagement characteristics based on advanced average flow model[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (6): 1557- 1563
[5]   LI W, HUANG J, FEI J, et al. Simulation of the engagement of carbon fabric wet clutch: analytical and experimental comparison[J]. Tribology International, 2015, 90: 502-508.
[6]   LI M, KHONSARI M M, MCCARTHY D M C, et al. Parametric analysis for a paper-based wet clutch with groove consideration[J]. Tribology International, 2014, 80: 222-233.
[7]   胡宏伟, 王泽湘, 张志刚, 等 湿式离合器接合过程中瞬态温度场的仿真[J]. 中国科技论文, 2015, 10 (04): 467- 470
HU Hong-wei, WANG Ze-xiang, ZHANG Zhi-gang, et al Simulation of transient temperature field of wet clutch engagement[J]. China Sciencepaper, 2015, 10 (04): 467- 470
doi: 10.3969/j.issn.2095-2783.2015.04.020
[8]   JANG J Y, KHONSARI M M Thermal characteristics of a wet clutch[J]. Journal of Tribology-Transactions of the ASME, 1999, 121 (3): 610- 617
doi: 10.1115/1.2834111
[9]   PATIR N, CHENG H S Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology-Transactions of the ASME, 1978, 100 (1): 12- 17
doi: 10.1115/1.3453103
[10]   LI W, HUANG J, FEI J, et al Study on tribological properties as a function of operating conditions for carbon fabric wet clutch[J]. Tribology International, 2016, 94: 428- 436
doi: 10.1016/j.triboint.2015.10.015
[11]   GORDON S. BEAVERS, DANIEL D. JOSEPH boundary conditions at naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30 (01): 197- 207
doi: 10.1017/S0022112067001375
[12]   GREENWOOD J A, WILLIAMSON J B P Contact of nominally flat surfaces[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295 (1442): 300- 319
doi: 10.1098/rspa.1966.0242
[13]   于向军, 王国强, 王继新, 等 基于接触边界条件的球磨机应力分析及试验[J]. 吉林大学学报: 工学版, 2009, 39 (2): 372- 377
YU Xiang-jun, WANG Guo-qiang, WANG Ji-xin, et al Stress analysis and test of ball mill based on contact boundary conditions[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39 (2): 372- 377
[14]   SEPEHRI A, FARHANG K On elastic interaction of nominally flat rough surfaces[J]. Journal of Tribology, 2007, 130 (1): 11014
[15]   KOGUT L, ETSION I A finite element based elastic-plastic model for the contact of rough surfaces[J]. Tribology Transactions, 2003, 46 (3): 383- 390
doi: 10.1080/10402000308982641
[16]   高晓敏, 张协平, 吴凡, 等 摩擦片表面沟槽对离合器动态特性影响的研究[J]. 传动技术, 2001, 2001 (03): 10- 13
GAO Xiao-min, ZHANG Xie-ping, WU Fan, et al Research of the friction disk surface groove for influence on the clutch dynamic characteristic[J]. Transmission Technology, 2001, 2001 (03): 10- 13
doi: 10.3969/j.issn.1006-8244.2001.03.003
[17]   王晓燕, 李杰, 张志凯, 等 离合器摩擦副摩滑过程轴向振动特性研究[J]. 振动与冲击, 2017, 36 (04): 81- 87
WANG Xiao-yan, LI Jie, ZHANG Zhi-kai, et al Axial vibration characteristics of friction disks of clutch on sliding[J]. Journal of Vibration and Shock, 2017, 36 (04): 81- 87
[18]   廖湘平, 龚国芳, 孙辰晨, 等 基于AMESim的液粘调速离合器动态接合特性研究[J]. 农业机械学报, 2016, 47 (06): 324- 332
LIAO Xiang-ping, GONG Guo-fang, SUN Chen-chen, et al Dynamic engagement performance of hydro-viscous clutch based on AMESim[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47 (06): 324- 332
[19]   ZHANG Z, SHI X, GUO D Dynamic temperature rise mechanism and some controlling factors of wet clutch engagement[J]. Mathematical Problems in Engineering, 2016, 2016 (05): 1- 12
[20]   赵家昕, 马彪, 李和言, 等 湿式离合器接合过程中的热弹性稳定性[J]. 吉林大学学报: 工学版, 2015, 45 (01): 22- 28
ZHAO Jia-xin, MA Biao, LI He-yan, et al Thermoelastic stability of wet clutches during engaging process[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45 (01): 22- 28
[21]   CUI J, WANG C, XIE F, et al Numerical investigation on transient thermal behavior of multidisk friction pairs in hydro-viscous drive[J]. Applied Thermal Engineering, 2014, 67 (1/2): 409- 422
[22]   IQBAL S, AL-BENDER F, OMPUSUNGGU A P, et al. Modeling and analysis of wet friction clutch engagement dynamics[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 420-436.
[23]   HOLGERSON M Apparatus for measurement of engagement characteristics of a wet clutch[J]. Wear, 1997, 213 (1/2): 140- 147
[24]   LI T, HUANG Y, LIN J Studies on centrifugal clutch judder behavior and the design of frictional lining materials[J]. Mechanical Systems and Signal Processing, 2016, 66-67: 811- 828
doi: 10.1016/j.ymssp.2015.06.010
[25]   彭建鑫, 金辉, 陈慧岩 基于最优化理论的离合器接合曲线研究[J]. 北京理工大学学报, 2009, 29 (11): 964- 967
PENG Jian-xin, JIN Hui, CHEN Hui-yan Engagement curve of clutch based on optimization theory[J]. Transactions of Beijing Institute of Technology, 2009, 29 (11): 964- 967
[26]   王立勇, 李乐, 李和言 基于有限元法的湿式离合器摩擦界面温度场变化过程分析[J]. 润滑与密封, 2017, 42 (1): 15- 26
WANG Li-yong, LI Le, LI He-yan Study on temperature field variation process of friction interface of wet clutch based on finite element method[J]. Lubrication Engineering, 2017, 42 (1): 15- 26
doi: 10.3969/j.issn.0254-0150.2017.01.003
[27]   胡宏伟, 周晓军, 庞茂, 等 基于B样条小波的离合器温度场有限元分析[J]. 浙江大学学报: 工学版, 2009, 43 (01): 143- 147
HU Hong-wei, ZHOU Xiao-jun, PANG Mao, et al Finite element analysis for temperature field of clutches based on B-spline wavelet[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (01): 143- 147
[28]   MENG F, SHI P, KARIMI H R, et al Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 491- 503
doi: 10.1016/j.ymssp.2015.06.025
[1] Qing-pan KONG,Xian-bing JI,Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1022-1028.
[2] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[3] Song-tao JIN,Chang LIU,Li-ying WANG,Yang YANG. Heat transfer coefficient of passive house exterior wall in cold area[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1966-1976.
[4] TANG Wei-yu, CHEN Jing-xiang, HAN Jin-cheng, HE Yan, LI Wei, LIU Zhi-chun. Comparison of flow boiling heat transfer characteristics inside different enhanced heat transfer tubes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1216-1222.
[5] MOU Lin-wei, ZHANG Yu-hong, LI Jia-qi, ZHANG Jia-yi, JIANG Ping, FAN Li-wu. Surface wicking effect on boiling heat transfer during quenching[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 960-965.
[6] YANG Ji-hu, SUN Zhi-jian, YUAN Rui-feng, HUANG Hao, CHEN Tian-yu, HU Ya-cai. Study on heat transfer and ash deposit characteristics of fluoroplastic steel air-preheater in power plant[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 577-583.
[7] TANG Yuan, SONG Jia, BAI Yang, ZHANG Xiao-bin, QIU Li-min. Progress in implementation of dropwise condensation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 273-287.
[8] DUAN Yi, CHENG Le-ming, WU Xue-song, QIU Kun-zan, LUO Zhong-yang. Experimental study on premixed combustion in two-layer porous media with embedded heat exchangers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1626-1632.
[9] XIA Yu,QIU Xing qi,HUI Yuan yuan. Heat transfer in opening system with participating mediums[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1367-1372.
[10] LI Xiao hua, BAO Wei wei, WANG Jing, LI Hui xia, CAI Yi xi. Heat dissipation of LED headlamps based on corona discharge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1284-1289.
[11] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[12] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 477-484.
[13] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 0-.
[14] LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 306-311.
[15] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1859-1864.