Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 638-644    DOI: 10.3785/j.issn.1008-973X.2019.04.004
    
Analysis of stress and stiffness of flexspline based on response surface method
Lei ZHANG1(),Li-hua ZHANG3,Jia-xu WANG1,2,Jun-yang LI1,*(),Ke XIAO1
1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
2. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
3. AVIC Aerospace Precision Machinery Manufacturing Company, Hanzhong 723000, China
Download: HTML     PDF(1043KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mechanical model of flexspline gear ring was theoretically established aiming at the design demand of flexspline such as small size, high stiffness and long life. The matching and compensating method of dimension was explored in the design. Then the finite element analysis was conducted in ANSYS Workbench by using response surface method and central composite design (CCD) method, and the response surface of stress and stiffness was analyzed. The influence law of each structural parameter on stress and stiffness were obtained. The analysis results show that radial deformation can be reduced to counteract the increased stress when radius decreases, and thickness can be reduced to counteract the generated stress when length decreases in the design of small volume. The small volume design of the flexspline will weaken the bearing capacity and aggravate the phenomenon of stress concentration and fatigue damage at the ring gear. It is necessary to increase the ratio of thickness to diameter or reduce the radial deformation to reduce the phenomenon of stress concentration at the end of the ring gear under the condition of ensuring the meshing state and the bearing capacity. The regression curves of stress and stiffness were obtained, which can be used to obtain optimal value.



Key wordsresponse surface method      structural parameter of flexspline      stress      stiffness      optimize design     
Received: 18 March 2018      Published: 28 March 2019
CLC:  TH 132  
Corresponding Authors: Jun-yang LI     E-mail: 1106871508@qq.com;lijunyang1982@sina.com
Cite this article:

Lei ZHANG,Li-hua ZHANG,Jia-xu WANG,Jun-yang LI,Ke XIAO. Analysis of stress and stiffness of flexspline based on response surface method. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 638-644.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/638


基于响应面的柔轮应力和刚度分析

针对柔轮的小体积、高刚度、高寿命的设计要求,在理论上建立弹性齿圈受力模型,探究设计时结构间的尺寸搭配与补偿方法. 基于响应面法和中心复合设计(CCD)采样方法,在ANSYS Workbench中进行参数化建模和有限元分析,得出应力和刚度对结构参数的响应曲面(线),分析各结构参数对应力和刚度的影响规律. 分析结果表明,在柔轮的小体积设计中,可以减小径向变形量以抵消半径减小时增加的应力,减小壁厚以抵消筒长减小时内壁产生的应力. 柔轮的小体积设计会使承载能力减弱,加剧齿圈后端的应力集中和疲劳破坏. 应在保证啮合状态和承载能力的情况下,增大厚径比,减小径向变形量,以减轻齿圈后端的应力集中现象. 通过响应面法得出关于柔轮应力和刚度的回归曲线,可以用于设计时获取最优值.


关键词: 响应面法,  柔轮结构参数,  应力,  刚度,  优化设计 
Fig.1 Structure schematic of flexspline
Fig.2 Mechanical model of micro-section of flexspline gear ring
Fig.3 Flexspline and assembly model
Fig.4 Stress comparison between flexspline with tooth and non-tooth
Fig.5 Local sensitivity of stress
序号 r/mm w0/mm p1/MPa p2/MPa k/(105N·m·rad?1)
1 25 0.414 649 599 1.4
2 25 0.352 556 522 1.4
3 25 0.476 744 677 1.5
4 15 0.414 1 121 1 321 0.5
5 35 0.414 471 385 2.8
6 15 0.352 990 1 162 0.48
7 15 0.476 1 258 1 486 0.52
8 35 0.352 400 331 2.7
9 35 0.476 540 439 2.8
Tab.1 Parameters and results of r-w0
Fig.6 Curve of stress and stiffness trends on r
Fig.7 Curve of stress and stiffness trends on w0
序号 i j p1/MPa p2/MPa k/(105N·m·rad?1)
1 0.45 0.011 5 534 474 2.3
2 0.30 0.011 5 493 402 2.5
3 0.60 0.011 5 520 497 1.9
4 0.45 0.008 513 528 1.6
5 0.45 0.015 551 447 2.8
6 0.30 0.008 422 531 1.9
7 0.60 0.008 455 424 1.3
8 0.30 0.015 512 408 3.1
9 0.60 0.015 543 414 2.3
Tab.2 Parameters and results of i-j
Fig.8 Curve of stress and stiffness trends on i
Fig.9 Curve of stress and stiffness trends on j
[1]   王家序, 周祥祥, 李俊阳, 等 杯形柔轮谐波传动三维双圆弧齿廓设计[J]. 浙江大学学报: 工学版, 2016, 50 (4): 616- 624
WANG Jia-xu, ZHOU Xiang-xiang, LI Jun-yang, et al Three dimensional profile design of cup harmonic drive with double-circular-arc common-tangent tooth profile[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 616- 624
[2]   王家序, 袁攀, 谭春林, 等 基于齿条近似法的谐波传动空间齿廓设计方法[J]. 吉林大学学报: 工学版, 2017, 47 (4): 1121- 1129
WANG Jia-xu, YUAN Pan, TAN Chun-lin, et al Spatial tooth profile design of harmonic drive by rack approximation method[J]. Jilin Daxue Xuebao: Engineering Science, 2017, 47 (4): 1121- 1129
[3]   吴伟国, 于鹏飞, 侯月阳 短筒柔轮谐波齿轮传动新设计新工艺与实验[J]. 哈尔滨工业大学学报, 2014, 46 (1): 40- 46
WU Wei-guo, YU Peng-fei, HOU Yue-yang New design, new process of harmonic drive with short flexspline and its experiment[J]. Journal of Harbin Institute of Technology, 2014, 46 (1): 40- 46
[4]   柴文杰. 谐波齿轮传动柔轮变形特性研究[D]. 北京: 中国地质大学(北京), 2017.
CHAI Wen-jie. Studies on deformation characteristics of flexible wheel in harmonic gear drive [D]. Beijing: China University of Geosciences (Beijing), 2017.
[5]   MA Dong-hui, WU Jia-ning, LIU Tao, et al Deformation analysis of the flexspline of harmonic drive gears considering the driving speed effect using laser sensors[J]. Science China (Technological Sciences), 2017, 60 (08): 1175- 1187
doi: 10.1007/s11431-016-9060-y
[6]   邹创, 陶涛, 梅雪松, 等 机器人关节短筒谐波减速器接触计算与分析[J]. 西安交通大学学报, 2013, 47 (5): 82- 87
ZOU Chuang, TAO Tao, MEI Xue-song, et al Contact analysis for short harmonic reducer in robotic joints[J]. Journal of Xi’an Jiaotong University, 2013, 47 (5): 82- 87
[7]   ZOU Chuang, TAO Tao, JIANG Ge-dong, et al A harmonic drive model considering geometry and internal interaction[J]. Journal of Mechanical Engineering Science, 2015, 231 (4): 1- 15
[8]   李奇. 不同参数对谐波减速器柔轮动态特性的影响[D]. 重庆: 重庆大学, 2016.
LI Qi. Effect of different parameters on the dynamic characteristics of the flexspline of a harmonic reducer [D]. Chongqing: Chongqing University, 2016.
[9]   PACANA J, WITKOWSKI W, MUCHA J FEM analysis of stress distribution in the hermetic harmonic drive flexspline[J]. Strength of Materials, 2017, (1): 1- 11
[10]   LEóN D, ARZOLA N, TOVAR A Statistical analysis of the influence of tooth geometry in the performance of a harmonic drive[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37 (2): 723- 735
[11]   KAYABASI O, ERZINCANLI F Shape optimization of tooth profile of a flexspline for a harmonic drive by finite element modeling[J]. Materials and Design, 2007, 28 (2): 441- 447
doi: 10.1016/j.matdes.2005.09.009
[12]   TJAHJOWIDODO T, AL-BENDER F, BRUSSEL H V Theoretical modelling and experimental identification of nonlinear torsional behaviour in harmonic drives[J]. Mechatronics, 2013, 23 (5): 497- 504
doi: 10.1016/j.mechatronics.2013.04.002
[13]   TIMOFEEV G A, KOSTIKOV Y V Torsional rigidity of harmonic gear drives[J]. Russian Engineering Research, 2016, 36 (12): 995- 998
doi: 10.3103/S1068798X16120169
[14]   赵建虎. 谐波传动机构柔轮的应力分布及寿命特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2013.
ZHAO Jian-hu. Stress distribution and life characteristics analysis of flexspline in harmonic drive [D]. Harbin: Harbin Institute of Technology, 2013.
[15]   张俊, 刘先增, 焦阳, 等 基于刚柔耦合模型的行星传动固有特性分析[J]. 机械工程学报, 2014, 50 (15): 104- 112
ZHANG Jun, LIU Xian-zeng, JIAO Yang, et al Vibration analysis of planetary gear trains based on a discrete- continuum dynamic model[J]. Journal of Mechanical Engineering, 2014, 50 (15): 104- 112
[16]   叶南海, 邓鑫, 何韵, 等 谐波柔轮力学分析与疲劳寿命研究[J]. 湖南大学学报: 自然科学版, 2018, (2): 18- 25
YE Nan-hai, DENG Xin, HE Yun, et al Study on mechanical analysis and fatigue life of harmonic flexspline[J]. Journal of Hunan University: Natural Science, 2018, (2): 18- 25
[17]   KITTUR J K, CHOUDHARI M N, PARAPPAGOUDAR M B Modeling and multi-response optimization of pressure die casting process using response surface methodology[J]. International Journal of Advanced Manufacturing Technology, 2015, 77 (1-4): 211- 224
doi: 10.1007/s00170-014-6451-x
[18]   秦训鹏, 冯佳伟, 王永亮, 等 基于响应面方法的微型车车门模态分析与优化[J]. 中国机械工程, 2017, 28 (14): 1690- 1695
QIN Xun-peng, FENG Jia-wei, WANG Yong-liang, et al Structural modal analysis and optimization of mini-car doors based on response surface method[J]. China Mechanical Engineering, 2017, 28 (14): 1690- 1695
[1] Yuan CHEN,Deng-hui GUO,Li-xia TIAN. Design and modeling of wire-driven rigid-flexible parallel mechanism for wave compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 810-822.
[2] Bin ZHU,Nan JIANG,Chuan-bo ZHOU,Yong-sheng JIA,Xue-dong LUO,Ting-yao WU. Blasting seismic effect of buried cast iron pipeline in silty clay layer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 500-510.
[3] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[4] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[5] Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.
[6] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[7] Ying-jie GUO,Fan GU,Hui-yue DONG,Hai-jin WANG. Prediction and compensation of robot deformation under pressure force of pressure foot[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1457-1465.
[8] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[9] Yang QU,Yong-feng LUO,Zhao-chen ZHU,Qing-long HUANG. Modal stiffness method for seismic response analysis of latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1068-1077.
[10] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[11] Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.
[12] Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.
[13] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.
[14] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[15] Yi-bo WANG,Hui-ming DING,Jin-yang ZHENG,Qun-jie LU,Zhen-yu WANG,Ping XU,Zhi-wei CHEN. Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408)[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2190-2195.