Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 613-620    DOI: 10.3785/j.issn.1008-973X.2019.04.001
    
Design and analysis of folding mechanism for intelligent wheelchair-stretcher robot
Ling-feng SANG1,2,3(),Jian-zhong FU1,Zhong-xue GAN2,Hong-bo WANG4,5,Yu TIAN4,5
1. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Ningbo Intelligent Manufacturing Industry Research Institute, Yuyao 315400, China
3. College of Mechanical and Electrical Engineering, Ningbo Polytechnic, Ningbo 315800, China
4. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
5. Key Laboratory of Advanced Forging and Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao 066004, China
Download: HTML     PDF(1461KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A five-bar mechanism with single degree of freedom was proposed to realize the folding transforming of the intelligent wheelchair-stretcher robot. The mechanism was designed and analyzed in detail. The dimensions of the armrest link and the side link were optimized by using minimum containment area method, which were 507.9 mm and 332.5 mm, respectively. The driving device was designed by adopting six torsional springs and RV gear motor according to the static analysis in order to reduce the driving torque of the motor and compact overall structure. The folding mechanism of the robot was designed based on parameters optimization and the design of driving device. The stresses of the armrest link in the toilet state and the folding state were analyzed to verify its reliability. The prototype of the intelligent wheelchair-stretcher robot was developed, and the performance of its folding mechanism was tested. The designed driving device and the optimized parameters are reasonable from the change of the motor current and the view of the movement process of the whole device.



Key wordswheelchair-stretcher robot      mechanism design      folding mechanism      driving device     
Received: 09 August 2018      Published: 28 March 2019
CLC:  TP 242  
Cite this article:

Ling-feng SANG,Jian-zhong FU,Zhong-xue GAN,Hong-bo WANG,Yu TIAN. Design and analysis of folding mechanism for intelligent wheelchair-stretcher robot. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 613-620.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.001     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/613


智能轮椅担架车的折展机构设计与分析

针对智能轮椅担架车折展状态之间的转换难题,提出单自由度5杆机构,对该机构进行详细的设计与分析. 通过最小包容面积法,得出扶手连杆和连架杆的最优尺寸,分别为507.9和332.5 mm;基于连杆机构的静力学分析,采用6根扭簧和RV减速电机作为连杆机构的驱动装置,减少了电机的驱动力矩,整体结构紧凑. 根据优化参数和驱动装置的计算结果,开展智能轮椅担架车折展机构的设计,分析扶手构件在如厕状态和折展状态时的应力变化,验证了该构件强度的可靠性. 研制智能轮椅担架车,采用不同重量的实验人员进行折展机构的性能测试,从机构的运动过程和电机电流变化来看,所设计的驱动装置和优化参数结果合理.


关键词: 轮椅担架车,  机构设计,  折展机构,  驱动装置 
Fig.1 Schematic diagram of folding mechanism
Fig.2 Schematic diagram of planar four bar linkage
Fig.3 Parameter optimization of folding mechanism
Fig.4 Force analysis of folding mechanism
Fig.5 Torque change of folding mechanism
UN/V i TN/(N·m) PN/W nN/(r·min?1
24 1/862 48 200 2
Tab.1 Parameter list of RV reduction motor
Fig.6 Vertical view of folding mechanism
Fig.7 Axonometric view of folding mechanism
Fig.8 Back mechanism diagram of intelligent wheelchair-stretcher robot
Fig.9 Structure diagram of intelligent wheelchair-stretcher robot in toilet state
参数 参数值 参数 参数值
材料 304不锈钢 网格划分 标准网格
竖直载荷 350 N 网格密度 良好
Tab.2 Loading parameter list of armrest
Fig.10 Stress simulation of armrest component
Fig.11 Displacement deformation simulation of armrest component
Fig.12 Stress analysis of armrest component in folding process
Fig.13 Intelligent wheelchair-stretcher robot
Fig.14 Driving device of folding mechanism
Fig.15 Folding process of intelligent wheelchair-stretcher robot
Fig.16 Current of motor in different weight
[1]   民政部. 2016年社会服务发展统计公报[EB/OL]. (2017-08-03)[2018-05-25]. http://www.gov.cn/xinwen/2017-08/03/content_5215805.htm.
[2]   J?GER M, JORDAN C, THEILMEIER A, et al Lumbar-load analysis of manual patient-handling activities for biomechanical overload prevention among healthcare workers[J]. Annals of Occupational Hygiene, 2013, 57 (4): 528- 544
[3]   KUME Y, TSUKADA S, KAWAKAMI H Design and evaluation of rise assisting bed "Resyone?" based on ISO 13482[J]. Journal of the Robotics Society of Japan, 2015, 33 (10): 781- 788
doi: 10.7210/jrsj.33.781
[4]   SKODNICK L AgileLife system moves patients without lifting[J]. Westchester County Business Journal, 2014, 50 (34): 17
[5]   邢晓冬, 周秋雨, 范鹏宇. 一种可如厕轮椅车: CN105012087A [P]. 2015-11-04.
[6]   邢晓冬, 周秋雨, 范鹏宇, 等. 一种可辅助上下床可如厕的多功能轮椅: CN205569196U [P]. 2016-06-08.
[7]   陈殿生, 范庆麟, 赵宸, 等. 一种床椅一体化的多功能护理床: CN102038588A [P]. 2011-05-04.
[8]   李学威, 曲道奎, 马壮, 等. 一种多功能床椅一体化机器人: CN 105816282 A [P]. 2016-08-03.
[9]   瑞典ArjoHuntleigh公司. Lateral transfer and repositioning [EB/OL]. [2018-05-26]. http://www.arjohuntleigh.com/products/patient-transfer-solutions/lateral-transfer-and-repositioning/.
[10]   王洪波, 笠上文男 病人搬移设备的机电一体化设计和应用[J]. 机械工程学报, 2009, 45 (7): 68- 74
WANG Hong-bo, FUMIO Kasagami Mechatronic design and application of a patient transfer apparatus[J]. Chinese Journal of Mechanical Engineering, 2009, 45 (7): 68- 74
[11]   LI Y W, DAI S M, ZHENG Y W, et al Modeling and kinematics simulation of a mecanum wheel platform in recurdyn[J]. Journal of Robotics, 2018, 2018 (1): 1- 7
[12]   王志学, 刘一鸣, 贾连斌, 等 折叠式担架车机构创新设计[J]. 机械设计, 2010, 27 (8): 95- 96
WANG Zhi-xue, LIU Yi-ming, JIA Lian-bin, et al An innovative design of folding wheel stretcher mechanism[J]. Journal of Machine Design, 2010, 27 (8): 95- 96
[13]   王杰, 管声启, 夏齐霄 手指康复外骨骼机器人的结构优化设计[J]. 中国机械工程, 2018, 29 (2): 224- 229
WANG Jie, GUAN Sheng-qi, XIA Qi-xiao Structural design of finger rehabilitation exoskeleton robots[J]. China Mechanical Engineering, 2018, 29 (2): 224- 229
doi: 10.3969/j.issn.1004-132X.2018.02.015
[14]   卜薇薇, 郦鸣阳, 喻洪流, 等 具有防坠床功能的智能护理床的研制[J]. 中国组织工程研究与临床康复, 2007, 11 (48): 9765- 9767
BU Wei-wei, LI Ming-yang, YU Hong-liu, et al Design of an intelligent nursing bed with fall-proof function[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11 (48): 9765- 9767
doi: 10.3321/j.issn:1673-8225.2007.48.040
[15]   宋瑜, 施至豪, 唐智川, 等 四连杆电动椅电动机的动力学模型及仿真[J]. 机械工程学报, 2015, 51 (19): 47- 52
SONG Yu, SHI Zhi-hao, TANG Zhi-chuan, et al Kinematics model and simulation for motor of four-link electric chair[J]. Chinese Journal of Mechanical Engineering, 2015, 51 (19): 47- 52
[16]   黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006.
[17]   李波, 鲁保春 确定平面铰链四杆机构结构尺寸方法的探讨[J]. 武汉理工大学学报, 1999, (1): 84- 88
LI Bo, LU Bao-chun Research on methods for determining sizes of quadric crank mechanism of plane[J]. Journal of Wuhan Transportation University, 1999, (1): 84- 88
doi: 10.3321/j.issn:1671-4431.1999.01.026
[18]   丁玉兰. 人机工程学[M]. 4版. 北京: 北京理工大学出版社, 2011.
[1] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[2] Yuan CHEN,Deng-hui GUO,Li-xia TIAN. Design and modeling of wire-driven rigid-flexible parallel mechanism for wave compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 810-822.
[3] Xin-zhi GAO,Zuo-jun LIU,Yan ZHANG,Ling-ling CHEN. Bicycle riding phase recognition of lower limb amputees based on GWO-SVM[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 648-657.
[4] Can-jun YANG,Zhen-zhe PENG,Ling-hui XU,Wei YANG. Design of flexible knee-joint protection exoskeleton and walking assistance method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 213-221.
[5] Ming-min LIU,Dao-kui QU,Fang XU,Feng-shan ZOU,Kai JIA,Ji-lai SONG. Gait planning of quadruped robot based on divergence component of motion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 244-250.
[6] Xin MA,Xin-wu LIANG,Ji-yuan CAI. Fast visual SLAM method based on point and line features[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 402-409.
[7] Yan-wei ZHAO,Jian ZHANG,Xian-ming ZHOU,Geng-yu WU. Dynamic tracking and precise landing of UAV based on visual magnetic guidance[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 96-108.
[8] Da-zhao DONG,Guan-hua XU,Ji-liang GAO,Yue-tong XU,Jian-zhong FU. Online correction algorithm for posture by robot assembly based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 145-152.
[9] Ying-jie GUO,Fan GU,Hui-yue DONG,Hai-jin WANG. Prediction and compensation of robot deformation under pressure force of pressure foot[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1457-1465.
[10] Jun-ning ZHANFG,Qun-xing SU,Peng-yuan LIU,Zheng-jun WANG,Hong-qiang GU. Adaptive monocular 3D object detection algorithm based on spatial constraint[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1138-1146.
[11] Yan XU,Qin FANG,Chao ZHANG,Hong-wei LI. Driving and load performances of pneumatic soft self-folding manipulators[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 398-406.
[12] Yan ZHANG,Jian-zhou WANG,Wei LI,Jie WANG,Ling-ling CHEN,Peng YANG. Knee-joint exoskeleton control based on data-driven approach[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2024-2033.
[13] Jia-tao DING,Jie HE,Lin-zhi LI,Xiao-hui XIAO. Real-time walking pattern optimization for humanoid robot based on model predictive control[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1843-1851.
[14] Tie ZHANG,Meng XIAO,Yan-biao ZOU,Jia-dong XIAO. Research on robot constant force control of surface tracking based on reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1865-1873.
[15] Xing-dong LI,He-wei GAO,Long SUN. Inter frame point clouds registration algorithm for pose optimization of depth camera[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1749-1758.