Please wait a minute...
J4  2010, Vol. 44 Issue (8): 1573-1578    DOI: 10.3785/j.issn.1008-973X.2010.08.025
    
Effect of additives on fusion characteristic
of ashes during rice straw combustion
MA Xiao-qin1,2, QIN jian-guang1, LUO Zhong-yang1, YU Chun-jiang1,
FANG Meng-xiang1,  CEN Ke-fa1
1. Stake Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China, 310027 China;
2.School of Mechanics and Electronics , Henan Institute of Science and Technology ,Xinxiang, 453003 China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to provide references and bases for solving the problem of slag and agglomeration that occurred during biomass thermal chemical transformation of straw, experiments on combustion of pure pulverized straw and mixture of pulverized straw with additives were carried out in a pilot plant. The additives which selected by thermal equilibrium calculation included aluminum powder, silicon powder, Al2O3, SiO2, Ca3(PO4)2, CaSiO3, CaCO3, Al2(SO4)318H2O, CaSO4, CaO and (NH4)H2PO4. By analyzing ash samples, we singled out ideal additives. They are (NH4)H2PO4, Al2(SO4)318H2O, CaSO4, CaO and CaCO3. According to XRD measurements, potassium in rice straw can be turned into high melting point of potassium in the form of K2CaP2O7 with (NH4)H2PO4 as additive. CaSO4 and Al2(SO4)318H2O can make potassium be fixed in the form of K2SO4. CaO and CaCO3 are not directly involved in the reaction with alkali metals, but can react to other elements in the system, which promotes potassium in the straw to be separated from bottom ash. The result shows that adding additives to straw is one of the effective ways to solve straw ash fusion problem caused by alkali metals.



Published: 21 September 2010
CLC:  TK 6  
Cite this article:

MA Xiao-Qin, QIN Jian-Guang, JIA Zhong-Yang, TU Chun-Jiang, FANG Meng-Xiang, CEN Ge-Fa. Effect of additives on fusion characteristic
of ashes during rice straw combustion. J4, 2010, 44(8): 1573-1578.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.08.025     OR     http://www.zjujournals.com/eng/Y2010/V44/I8/1573


添加剂对稻草灰熔融特性影响的实验研究

为了给生物质热化学转化中灰结渣和聚团问题的解决提供参考和依据, 在小型实验装置上对稻草、稻草与添加剂混合物进行了燃烧试验. 通过热力平衡计算软件选出合适的添加剂, 添加剂包括Al粉、Si粉、Al2O3、SiO2、Ca3(PO4)2、CaSiO3、CaCO3、Al2(SO4)318H2O、CaSO4、CaO、(NH4)H2PO4等, 通过对样品燃烧生成的底灰进行观测分析, 选择较理想的添加剂(NH4)H2PO4, Al2(SO4)318H2O, CaSO4, CaO, CaCO3. 理想添加剂样品底灰的XRD测试结果表明, (NH4)H2PO4可将稻草中钾转化为高熔点的K2CaP2O7;CaSO4和Al2(SO4)318H2O则可将碱金属钾以K2SO4形式固定在底灰中;CaO, CaCO3不直接与碱金属反应, 但可与系统中的其它元素进行反应, 促进稻草中熔融态钾的转化析出. 实验结果表明, 添加剂是解决由碱金属引起的秸秆灰熔融问题的有效途径之一.

[1] 马孝琴, 骆仲泱, 方梦祥, 等. 添加剂对秸秆燃烧过程中碱金属行为的影响 [J]. 浙江大学学报:工学版, 2006, 40(4):599604.
MA Xiaoqin, LUO Zhongyang, FANG Mengxiang, et al. Effect of additives on behavior of alkali metals during straw combustion [J]. Journal of Zhejiang University : Engineering Science, 2006, 40(4): 599604.
[2] ERGDENLER A, GHALY A E. Agglomeration of silica sand in a fluidized bed gasifier operating on wheat straw [J]. Biomass Bioenergy, 1993, 4(2):135147.
[3] LIN Weigang, DAMJOHANSEN K, FRANDSEN F. Agglomeration in biofuel fired fluidized bed combustors [J]. Chemical Engineering Journal, 2003, 96(13):171185.
[4] NIELSEN H P, FRANDSEN F J, DAMJOHANSEN K, et al. The implications of chlorineassociated corrosion on the operation of biomassfired boilers [J]. Progress in Energy and Combustion Science, 2000, 26(3):283298.
[5] LIN Weigang, KRUSHOLM G, DAMJOHANSEN K, et al. Agglomeration phenomena in fluidized bed combustion of straw [C]∥14th International Conference on Fluidized Bed Combustion. Vancouver, Canada, New York, NY: ASME, 1997:831838.
[6] 马孝琴. 秸秆在流化床中燃烧床料聚团的试验研究[D], 杭州:浙江大学, 2006:4665.
MA Xiaoqin. The study on the agglomeration in straw fired fluidized bed combustors [D]. Hangzhou: Zhejiang University, 2006:4665.
[7] STEENARI B M, LINDQVIST O. Hightemperature reactions of straw ash and the antisintering additives kaolin and dolomite [J]. Biomass Bioenergy, 1998, 14(1):6776.
[8] VUTHALURU H B, ZHANG Dongke. Effect of Ca and Mgbearing minerals on particle agglomeration defluidization during fluidizedbed combustion of a South Australian lignite [J]. Fuel Processing Technology, 2001, 69(1):1327.
[9] REIFENSTEIN A P, KAHRAMAN H, COINC D A, et al. Behavior of selected minerals in an improved ash fusion test: quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite [J]. Fuel 1999, 78(12):14491461.
[10] ARDERSEN K H. Deposits formation during coalstraw cocombustion in a utility PFboiler [D]. Lyngby: Technical University of Denmark, 1998.
[11] NIELSEN K. Anvendelse af additiver til begrnsning af belgningsdannelse og korrosion [D]. Lyngby: Technical University of Denmark, 2003.
[12] 别如山,李炳熙, 陆慧林, 等. 燃生物废料流化床锅炉 [J]. 热能动力工程, 2000, 15(4):345347.
BIE Rushan, LI Bingxi, LU Huilin, et al. Biomass fired Fluidized Bed Boilers [J]. Journal of Engineering for Thermal Energy and Power, 2000, 15(4):345347.

[1] CHENG Jun, ZHUANG Liang, HUANG Yun, SUN Jing, ZHOU Jun-hu, CEN Ke-fa. Flow field optimization and flashing light effect of flat plate photobioreactor for microalgae growth[J]. J4, 2013, 47(11): 1958-1963.
[2] ZHU Ying-ying, WANG Shu-rong,GE Xiao-lan,LI Xin-bao,ZHOU Jin-song,LUO Zhong-yang. Thermodynamic simulation of methanol synthesis from
biomass-derived syngas
[J]. J4, 2011, 45(2): 341-347.
[3] CHEN Ling-Gong, TUN Hua-Cheng, ZHOU Hao, CEN Ge-Fa. Quantitative analysis of multi-component gases mixture
evolved in combined TG-FTIR
[J]. J4, 2010, 44(8): 1579-1583.
[4] WANG Qi, JIA Zhong-Yang, WANG Shu-Rong, CEN Ge-Fa. Products of highgrade liquid fuels by biomass fast pyrolysis[J]. J4, 2010, 44(5): 988-990.
[5] SONG Wen-Lu, CHENG Jun, XIE Bin-Fei, ZHOU Dun-Hu, CEN Ge-Fa. Cogeneration of hydrogen and methane from pretreated fat by anaerobic fermentation[J]. J4, 2010, 44(3): 476-481.