|
|
Global task coordinate frame based contouring control for biaxial electrohydraulic system |
XIONG Yi, WEI Jian hua, FENG Rui lin, ZHANG Qiang |
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The global task coordinate frame (GTCF) based nonlinear adaptive robust control (ARC) method was extended to design a contouring motion controller for biaxial electrohydraulic system, in order to solve precise control problem of contouring motion. The nonlinear dynamic model of the biaxial electrohydraulic system was developed in Cartesian coordinates, and the model is transformed into the GTCF. Considering the strongly coupled and highly nonlinear dynamic model of the electrohydraulic system obtained after coordinate transformation as well as parametric uncertainties, uncertain nonlinearities and external disturbance inherently in the model, the nonlinear adaptive robust control method was adopted to synthesize the contouring motion controller. In the designed controller, contouring control stiffness and tracking control stiffness can be regulated flexibly, which will potentially improve system stability without losing contouring control performance. The proposed GTCF based ARC method and cross-coupled ARC method were compared in experiment. As a result, the root mean square values of contour error for circular desired trajectory are less than 15μm while using GTCF based ARC method. The experimental results show that GTCF based ARC achieves satisfied contouring control performance and presents excellent coordinating ability.
|
Published: 01 November 2015
|
|
基于全局任务坐标系的二轴电液系统轮廓控制
将基于正交全局任务坐标系(GTCF)的非线性自适应鲁棒控制(ARC)方法扩展应用于二轴电液系统的轮廓运动控制,以解决精确轮廓控制的难题.构造二轴电液系统在笛卡尔坐标系下的非线性动力学模型,并将该模型坐标变换于正交全局任务坐标系中.针对此变换后得到的强耦合非线性动力学模型及其中存在的参数不确定性、不确定非线性和建模误差,利用非线性自适应鲁棒控制方法综合二轴电液系统的轮廓运动控制器.该控制器可以灵活地调整轮廓控制刚度与跟踪控制刚度,可在保证系统稳定的前提下尽可能地提高轮廓控制的性能.将所提控制方法与基于交叉耦合的自适应鲁棒轮廓运动控制方法进行对比实验,结果表明,所提方法即使在单轴跟踪误差较大的情况下仍然实现了更为精确的轮廓控制,在实验条件下轮廓误差的均方根值在15 μm以内,表现出良好的轮廓控制性能与协调性.
|
|
[1] 吴爱国,杨硕,张涵,等. 多缸锻造液压机的调平和跟踪控制[J]. 吉林大学学报:工学版,2014,44(4):1051-1056.
WU Ai guo, YANG Suo, ZHANG Han, et al. Leveling and tracking control of multi cylinder forging hydraulic press [J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44(4): 1051-1056.
[2] LU X J, HUANG M H. System decomposition based multilevel control for hydraulic press machine [J]. IEEE Transactions on Industry Electronics, 2012, 59(4): 1980-1987.
[3] 彭雄斌,龚国芳,陈馈,等. 管片拼装机提升缸模糊PID同步控制[J]. 浙江大学学报:工学版,2014,48(11):2002-2008.
PENG Xiong bin, GONG Guo fang, CHEN Kui, et al. Synchronization fuzzy PID control of lifting hydraulic cylinders for segment erector [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(11): 2002-2008.
[4] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. 浙江大学学报:工学版,2013,47(5):755-760.
WEI Jian hua, GUO Kai, XIONG Yi. Synchronized motion control for multi axis electro hydraulic system of large equipment [J]. Journal of Zhejiang University: Engineering Science, 2013, 47(5): 755-760.
[5] MUSIC O, ALLWOOD J M, KAWAI K. A review of the mechanics of metal spinning [J]. Journal of Materials Processing Technology, 2010, 210(1): 3-23.
[6] 赵升吨,赵承伟,王君峰,等. 现代旋压设备发展趋势的探讨[J]. 中国机械工程,2012,23(10):1251-1255.
ZHAO Sheng dun, ZHAO Cheng wei, WANG Jun feng, et al. Discussion about development trends of modern spinning equipment [J]. China Mechanical Engineering, 2012, 23(10): 1251-1255.
[7] 李继贞,韩冬,刘德贵,等. 1000kN大型立式数控强力旋压机[J]. 锻压技术,2014,39(2):1-5.
LI Ji zhen, HAN Dong, LIU De gui, et al. A large vertical NC power spinning machine of 1000kN [J]. Forging & Stamping Technology, 2014, 39(2): 1-5.
[8] BUTLER J, TOMIZUKA M. Trajectory planning for high speed multiple axis contouring systems [C]∥Proceedings of the American Control Conference. New York: IEEE, 1989: 87-94.
[9] YANG J Z, LI Z X. A novel contour error estimation for position loop based cross coupled control [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 643-655.
[10] CHIU G T C, TOMIZUKA M. Contouring control of machine tool feed drive systems: a task coordinate frame approach [J]. IEEE Transactions on Control Systems Technology, 2001, 9(1): 130-139.
[11] CHEN C L, LIN K C. Observer based contouring controller design of a biaxial stage system subject to friction [J]. IEEE Transactions on Control Systems Technology, 2001, 16(2): 322-329.
[12] YAO B, HU C X, WANG Q F. An orthogonal global task coordinate frame for contouring control of biaxial systems [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(4): 622-634.
[13] YAO B, HU C X, WANG Q F. Coordinated adaptive robust contouring controller design for an industrial biaxial precision gantry [J]. IEEE/ASME Transactions on Mechatronics, 2012, 15(5): 728-735.
[14] 胡楚雄. 基于全局任务坐标系的精密轮廓运动控制研究[D]. 杭州:浙江大学,2010.
HU Chu xiong. Global task coordinate frame based precision contouring motion control [D]. Hangzhou: Zhejiang University, 2010.
[15] YAO B, BU F P, Reedy J, et al. Adaptive robust motion control of single rod hydraulic actuators: theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79-91.
[16] 陈刚,柴毅,魏善碧,等. 非线性电液伺服系统的多滑模模糊控制[J]. 农业机械学报,2008, 39(10):222-226.
CHEN Gang, CAI Yi, WEI Shan bi, et al. Multiple sliding mode fuzzy control for nonlinear electrohydraulic servo system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 222-226.
[17] KOREN Y, LO C C. Advanced controllers for feed drives [J]. CIRP Proc. Manufacturing Systems, 1992, 41(2):689-698.
[18] BARTON K L, ALLEYNE A G. A cross coupled iterative learning control design for precision motion control [J]. IEEE Transactions on Control Systems Technology, 2008, 16(6): 1218-1231. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|