Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 269-278    DOI: 10.3785/j.issn.1008-973X.2026.02.005
能源工程、机械工程     
基于改进粒子群算法的冗余机器人喷涂轨迹优化
钟艺鹏1,2(),沙建军1,2,*(),张一飞1,2,杨汶龙1,2,殷婷1,2,马祥龙1,2
1. 哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001
2. 哈尔滨工程大学 青岛创新发展基地,山东 青岛 266000
Spraying trajectory optimization for redundant robots based on improved particle swarm algorithm
Yipeng ZHONG1,2(),Jianjun SHA1,2,*(),Yifei ZHANG1,2,Wenlong YANG1,2,Ting YIN1,2,Xianglong MA1,2
1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
2. Qingdao Innovation Development Base, Harbin Engineering University, Qingdao 266000, China
 全文: PDF(1620 KB)   HTML
摘要:

针对大型部件自动喷涂过程中冗余机器人耦合度低造成的轨迹不平滑、关节冲击问题,提出新的喷涂轨迹优化方法. 建立冗余机器人模型,结合分站式定位逆解和阻尼最小二乘法求逆运动学解. 采用改进粒子群算法优化冗余机器人外部轴轨迹,引入自适应惯性权重和非线性学习因子,增强算法搜索能力,提高算法的求解精度与寻优速度. 仿真实验表明,与原轨迹、GA-PSO算法优化后的轨迹和改进模拟退火遗传算法优化后的轨迹相比,采用改进粒子群算法优化后,机器人在直线喷涂任务中整体能量损耗分别降低了35.4%、1.3%和2.8%,外部轴运动幅度分别降低了32.6%、0.4%和2.3%;在曲线喷涂任务中整体能量损耗分别降低了26.8%、2.8%和7.3%,外部轴运动幅度分别降低了58.7%、17.8%和21.0%.

关键词: 冗余机器人机器人喷涂轨迹优化阻尼最小二乘法粒子群算法    
Abstract:

A new spraying trajectory optimization method was proposed to eliminate the unsmooth trajectory and joint impact that occurred when a redundant robot exhibited poor point-coupling performance during the automatic spraying of large parts. A redundant robot model was established, and an inverse kinematics solution was obtained by combining an inverse solution of stationary localization and the damped least squares method. An improved particle swarm algorithm was used to optimize the trajectory of the redundant robot’s external axes, the adaptive inertia weights and nonlinear learning factors were introduced to enhance the algorithm’s searching ability, and to increase the solving accuracy and optimization search speed of the algorithm. In simulation, the improved particle swarm algorithm scheme was compared with the original trajectory and with those generated by the GA-PSO algorithm and by the improved simulated annealing genetic algorithm. For the linear spraying task, it cut overall energy loss by 35.4%, 1.3% and 2.8%, and reduced the amplitude of the external axis motion by 32.6%, 0.4% and 2.3%, respectively. The corresponding reductions for the curved spraying task were 26.8%, 2.8% and 7.3% in energy, and 58.7%, 17.8% and 21.0% in axis motion.

Key words: redundant robot    robot spraying    trajectory optimization    damped least squares method    particle swarm algorithm
收稿日期: 2025-02-07 出版日期: 2026-02-03
CLC:  TP 241.2  
基金资助: 装备研制项目(GQZ2023004133).
通讯作者: 沙建军     E-mail: zyp_06@hrbeu.edu.cn;shajianjun_hh@163.com
作者简介: 钟艺鹏(1999—),男,硕士生,从事工业机器人运动规划控制研究. orcid.org/0009-0005-2041-1354. E-mail:zyp_06@hrbeu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
钟艺鹏
沙建军
张一飞
杨汶龙
殷婷
马祥龙

引用本文:

钟艺鹏,沙建军,张一飞,杨汶龙,殷婷,马祥龙. 基于改进粒子群算法的冗余机器人喷涂轨迹优化[J]. 浙江大学学报(工学版), 2026, 60(2): 269-278.

Yipeng ZHONG,Jianjun SHA,Yifei ZHANG,Wenlong YANG,Ting YIN,Xianglong MA. Spraying trajectory optimization for redundant robots based on improved particle swarm algorithm. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 269-278.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.005        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/269

图 1  冗余机器人喷涂系统
$ A_i $$ {\theta }_{i} $/rad$ {d}_{i} $/mm$ {L}_{i-1} $/mm$ {\varphi }_{i-1} $/(°)
A1$ {\theta }_{1} $00$ {\varphi }_{0} $
A2$ {\theta }_{2} $00$ {\varphi }_{1} $
A3$ {\theta }_{3} $00$ {\varphi }_{2} $
A4$ {\theta }_{4} $0$ {L}_{3} $$ {\varphi }_{3} $
A5$ {\theta }_{5} $$ {d}_{5} $0$ {\varphi }_{4} $
A6$ {\theta }_{6} $$ {d}_{6} $0$ {\varphi }_{5} $
A7$ {\theta }_{7} $$ {d}_{7} $0$ {\varphi }_{6} $
A8$ {\theta }_{8} $$ {d}_{8} $0$ {\varphi }_{7} $
表 1  冗余机器人的Denavit-Hartenberg参数
图 2  机器人连杆模型
图 3  中空非球形手腕示意图
图 4  改进粒子群算法流程图
图 5  喷涂仿真环境
图 6  斑点迷彩图案喷涂路径
图 7  椭圆形喷嘴喷涂示意图
路径点序号x/mmy/mmz/mm
11500?3001400
2150020001400
表 2  直线喷涂路径点
图 8  算法关键参数和适应度变化曲线
算法${n_{\mathrm{c}}}$${\bar S_{{\mathrm{b}}}}$${E_{{\mathrm{s}}}}$/J
文献[9]180.27161159.9
文献[14]200.27201177.9
本研究120.27111145.3
表 3  不同算法的综合优化性能指标对比
图 9  算法优化前后冗余机器人外部轴位移对比(直线喷涂)
路径点x/mmy/mmz/mm$ {\theta _y} $/(°)
11 70001 00090
21 8004001 40060
32 0008001 70045
42 1001 2001 9000
52 1501 6002 0000
62 1002 0001 8500
71 9002 4001 50030
81 8002 2001 10045
91 7002 0001 00060
101 6001 80090090
表 4  曲线喷涂路径点
路径点Δx/mm
文献[9]文献[14]本研究
1561.4553.1594.2
2804.9651.8871.8
31 003.5796.71 082.1
41 213.1951.51 356.4
51 385.31 357.41 479.1
61 569.61 649.21 607.7
71 884.41 913.51 811.3
81 811.81 803.31 788.5
91 698.21 705.21 788.5
101 698.21 705.21 788.5
表 5  算法优化前后各路径点对应的冗余机器人外部轴位移
图 10  算法优化前后冗余机器人本体轴位移对比 (直线喷涂)
图 11  曲线喷涂路径
图 12  算法优化前后冗余机器人外部轴位移对比 (曲线喷涂)
图 13  算法优化前后冗余机器人本体轴位移对比 (曲线喷涂)
图 14  算法优化前后冗余机器人外部轴速度对比 (曲线喷涂)
图 15  算法优化前后冗余机器人本体轴速度对比 (曲线喷涂)
图 16  算法优化前后冗余机器人外部轴加速度对比 (曲线喷涂)
图 17  算法优化前后冗余机器人本体轴加速度对比 (曲线喷涂)
1 曾勇, 陈洪博, 赵雪雅, 等 喷涂机器人风机叶片分片喷涂轨迹优化[J]. 机床与液压, 2024, 52 (21): 64- 70
ZENG Yong, CHEN Hongbo, ZHAO Xueya, et al Spraying robot trajectory optimization for fan blade fragment[J]. Machine Tool and Hydraulics, 2024, 52 (21): 64- 70
2 曹仁俊. 喷涂机器人工作站的研究与实现 [D]. 芜湖: 安徽工程大学, 2019: 1–81.
CAO Renjun. Research and implementation of painting robot workstation [D]. Wuhu: Anhui Polytechnic University, 2019: 1–81.
3 GLEESON D, JAKOBSSON S, SALMAN R, et al Generating optimized trajectories for robotic spray painting[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19 (3): 1380- 1391
doi: 10.1109/TASE.2022.3156803
4 王旭浩. 7R 6-DOF型喷涂机器人设计及关键技术研究 [D]. 天津: 天津大学, 2019: 1–145.
WANG Xuhao. Investigation on design and key issues for 7R 6-DOF painting robot [D]. Tianjin: Tianjin University, 2019: 1–145.
5 李旭宇, 吴献智 串联六轴机械臂逆运动学几何解法[J]. 长沙理工大学学报: 自然科学版, 2024, 21 (2): 84- 91
LI Xuyu, WU Xianzhi Inverse kinematics of geometric algorithm of series six-axis manipulator[J]. Journal of Changsha University of Science and Technology: Natural Science, 2024, 21 (2): 84- 91
6 万珍平, 罗钊, 陆龙生, 等 关节角参数化结合接近矢量可行方向的五自由度机械臂逆运动学求解[J]. 华南理工大学学报: 自然科学版, 2023, 51 (1): 16- 21
WAN Zhenping, LUO Zhao, LU Longsheng, et al Inverse kinematics solution of 5-DOF manipulator via joint angle parameterization and feasible direction of approach vector[J]. Journal of South China University of Technology: Natural Science Edition, 2023, 51 (1): 16- 21
7 ZAPLANA I, BASANEZ L A novel closed-form solution for the inverse kinematics of redundant manipulators through workspace analysis[J]. Mechanism and Machine Theory, 2018, 121: 829- 843
doi: 10.1016/j.mechmachtheory.2017.12.005
8 王成军, 姚星宇, 杨林, 等 基于A*算法与组合函数的分拣机械臂轨迹规划[J]. 组合机床与自动化加工技术, 2023, (12): 25- 29
WANG Chengjun, YAO Xingyu, YANG Lin, et al Sorting robotic arm trajectory planning based on A* algorithm and combination function[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023, (12): 25- 29
9 YAO R, WANG J, LV Y, et al. The time-impact optimal trajectory planning for multi-joint robot based on GA-PSO [C]// Proceedings of the 4th International Conference on Computer, Control and Robotics. Shanghai: IEEE, 2024: 284–288.
10 ZHENG Z, JIANG D, XIONG H, et al Trajectory planning algorithm and simulation of 6-DOF manipulator[J]. International Journal of Wireless and Mobile Computing, 2018, 14 (2): 138
doi: 10.1504/IJWMC.2018.091140
11 郑雪芳, 林意 基于改进萤火虫算法的冗余机器人轨迹规划[J]. 组合机床与自动化加工技术, 2019, (12): 80- 84
ZHENG Xuefang, LIN Yi Trajectory planning for redundant robot based on improved glowworm swarm optimization algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2019, (12): 80- 84
12 孔令竹 基于灰狼优化算法的机械臂避障轨迹规划[J]. 机械工程与自动化, 2024, (1): 29- 32
KONG Lingzhu Obstacle-avoidance trajectory planning of manipulator based on grey wolf optimization algorithm[J]. Mechanical Engineering and Automation, 2024, (1): 29- 32
13 李甚霖, 曾庆生, 冯栋彦, 等 基于萤火虫-遗传算法的机械臂轨迹时间优化[J]. 机械工程师, 2024, (2): 62- 66
LI Shenlin, ZENG Qingsheng, FENG Dongyan, et al Time optimization of manipulator trajectory based on firefly-genetic algorithm[J]. Mechanical Engineer, 2024, (2): 62- 66
14 徐强, 徐坚磊, 胡燕海, 等 基于改进模拟退火遗传算法的机械臂轨迹优化[J]. 系统仿真学报, 2025, 37 (2): 404- 412
XU Qiang, XU Jianlei, HU Yanhai, et al Trajectory optimization of robotic arm based on improved simulated annealing genetic algorithm[J]. Journal of System Simulation, 2025, 37 (2): 404- 412
15 BAI J, LI J, WANG M. An efficient artificial bee colony algorithm for analytical inverse kinematics of redundant manipulator [C]// Proceedings of the 7th International Conference on Intelligent Robotics and Control Engineering. Xi’an: IEEE, 2024: 117–123.
16 周承仙, 富巍 串联机器人运动学分析与研究[J]. 中北大学学报: 自然科学版, 2016, 37 (5): 522- 529
ZHOU Chengxian, FU Wei Kinematic analysis and research of serial robot[J]. Journal of North University of China: Natural Science Edition, 2016, 37 (5): 522- 529
17 蒋新松. 机器人与工业自动化 [M]. 石家庄: 河北教育出版社, 2003: 34–35.
18 王润. 串联机器人运动学分析、结构优化设计及仿真研究 [D]. 天津: 天津大学, 2012: 1–64.
WANG Run. Research on the kinematics analysis, structural optimizationg design and simulation of serial robot [D]. Tianjin: Tianjin University, 2012: 1–64.
19 田威, 戴家隆, 周卫雪, 等 附加外部轴的工业机器人自动钻铆系统分站式任务规划与控制技术[J]. 中国机械工程, 2014, 25 (1): 23- 27
TIAN Wei, DAI Jialong, ZHOU Weixue, et al Process planning and control technology on multi-station working mode of robot drilling and riveting system with auxiliary axis[J]. China Mechanical Engineering, 2014, 25 (1): 23- 27
20 WANG X, ZHANG D, ZHAO C Inverse kinematics of a 7R 6-DOF robot with nonspherical wrist based on transformation into the 6R robot[J]. Mathematical Problems in Engineering, 2017, 2017: 2074137
doi: 10.1155/2017/2074137
21 CHIAVERINI S, SICILIANO B, EGELAND O Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator[J]. IEEE Transactions on Control Systems Technology, 1994, 2 (2): 123- 134
doi: 10.1109/87.294335
22 马斌, 吴泽忠 基于改进的粒子群算法求解供应链网络均衡问题[J]. 运筹与管理, 2020, 29 (2): 122- 128
MA Bin, WU Zezhong Research on supply chain network equilibrium model based on improved particle swarm optimization[J]. Operations Research and Management Science, 2020, 29 (2): 122- 128
23 胡渊. 基于粒子群算法的Dobot机械臂时间最优抓放轨迹规划研究 [D]. 重庆: 重庆大学, 2021: 1–71.
HU Yuan. Particle swarm optimization based time optimal pick-place trajectory planning in a Dobot manipulator [D]. Chongqing: Chongqing University, 2021: 1–71.
24 王延年, 向秋丽 基于改进粒子群优化算法的六自由度机器人轨迹优化算法[J]. 国外电子测量技术, 2020, 39 (1): 49- 53
WANG Yannian, XIANG Qiuli Trajectory of 6-DOF robot based on improved particle swarm optimization algorithm[J]. Foreign Electronic Measurement Technology, 2020, 39 (1): 49- 53
25 ZHONG Y, SONG L, SHA J, et al. Modeling of coating growth rate for digital camouflage robotic spraying based on elliptic double $ \beta $ models [C]// Proceedings of the 10th International Conference on Electrical Engineering, Control and Robotics. Guangzhou: IEEE, 2024: 63–68.
26 张公韬. 装备迷彩喷涂机器人路径规划方法研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021: 1–92.
ZHANG Gongtao. Research on path planning method for the equipment camouflage painting robot [D]. Harbin: Harbin Engineering University, 2021: 1–92.
[1] 门茂琛,赵睿,张金帅,王鹏,张庆. 基于改进模拟退火-粒子群的配电网分布式光伏承载力评估[J]. 浙江大学学报(工学版), 2024, 58(6): 1255-1265.
[2] 蔡亮,周泓岑,白恒,才振功,尹可挺,贝毅君. 基于多层BiLSTM和改进粒子群算法的应用负载预测方法[J]. 浙江大学学报(工学版), 2020, 54(12): 2414-2422.
[3] 郭洪武,蒲雷,张予燮,吴静,赵蕊,谭忠富. 基于粗糙集理论的风光蓄互补系统优化模型[J]. 浙江大学学报(工学版), 2019, 53(4): 801-810.
[4] 任智源, 侯向往, 郭凯, 张海林, 陈晨. 分布式卫星云雾网络及时延与能耗策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1474-1481.
[5] 葛晓波, 谢靓, 杨东武, 张树新, 杨癸庚. 大型构架式索网反射面天线机电集成设计[J]. 浙江大学学报(工学版), 2018, 52(4): 775-780.
[6] 张德胜, 刘安, 陈健, 赵睿杰, 施卫东. 采用粒子群算法的水平轴潮流能水轮机翼型多目标优化[J]. 浙江大学学报(工学版), 2018, 52(12): 2349-2355.
[7] 尹娇妹, 赵昕玥, 张树有. 考虑Sobol缺陷敏感度的抗恶劣环境结构设计方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1487-1494.
[8] 张震, 潘再平, 潘晓弘. 骨干粒子群算法两种不同实现的优化特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1350-1357.
[9] 曾勇,龚俊,许宁,吴乃领,王福元,赵世田. 面向犄角型曲面的喷涂机器人喷涂轨迹优化[J]. 浙江大学学报(工学版), 2014, 48(5): 791-798.
[10] 夏美梦,关富玲. 基于改进粒子群算法的天线索网预应力优化[J]. J4, 2013, 47(3): 480-487.
[11] 刘丞, 汪昆, 汪雄海. 基于粒子群算法的潮流发电机布局[J]. J4, 2013, 47(12): 2087-2093.
[12] 陈丽莉,黄民翔,甘德强. 基于改进离散粒子群算法的限流措施优化配置[J]. J4, 2011, 45(3): 510-514.
[13] 解利军, 王彦妮, 张帅. 基于改进粒子群算法的体绘制传递函数设计[J]. J4, 2010, 44(8): 1466-1472.
[14] 叶建芳, 潘晓弘, 王正肖, 等. 基于免疫离散粒子群算法的调度属性选择[J]. J4, 2009, 43(12): 2203-2207.
[15] 杨克己, 方文平, 黄一春, 等. 一种应用于超声无损检测的广谱反卷积技术研究[J]. J4, 2009, 43(10): 1766-1771.