| 交通工程、土木工程 |
|
|
|
|
| 地聚物浆体自重入渗胶结碎石的力学性能 |
杨祖强( ),国振*( ),刘恒宇,董常瑞,吕蓓凤 |
| 浙江大学 建筑工程学院,浙江 杭州 310058 |
|
| Mechanical properties of geopolymer slurry-cemented crushed stones by self-gravity infiltration |
Zuqiang YANG( ),Zhen GUO*( ),Hengyu LIU,Changrui DONG,Beifeng LV |
| College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
杨祖强,国振,刘恒宇,董常瑞,吕蓓凤. 地聚物浆体自重入渗胶结碎石的力学性能[J]. 浙江大学学报(工学版), 2025, 59(12): 2627-2634.
Zuqiang YANG,Zhen GUO,Hengyu LIU,Changrui DONG,Beifeng LV. Mechanical properties of geopolymer slurry-cemented crushed stones by self-gravity infiltration. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2627-2634.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.017
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2627
|
| 1 |
张杰茹. 公路受灾损毁应急恢复策略优化研究 [D]. 重庆: 重庆科技学院, 2023. ZHANG Jieru. Study on optimization of emergency recovery strategy for highway damage [D]. Chongqing: Chongqing University of Science and Technology, 2013.
|
| 2 |
郑刚, 龚晓南, 谢永利, 等 地基处理技术发展综述[J]. 土木工程学报, 2012, 45 (2): 127- 146 ZHENG Gang, GONG Xiaonan, XIE Yongli, et al State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45 (2): 127- 146
|
| 3 |
谢康, 陈晓斌, 尧俊凯, 等 高铁路基填料振动压实试验参数标准化方法与应用研究[J]. 岩石力学与工程学报, 2023, 42 (7): 1799- 1810 XIE Kang, CHEN Xiaobin, YAO Junkai, et al Study on standardization method and application of vibration compaction test parameters of high-speed railway subgrade filler[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (7): 1799- 1810
|
| 4 |
XIE K, LI T F, ZHAO Y M, et al Microstructure evolution of coarse-grained soil fillers during subgrade compaction-operation period based on CT technology[J]. Transportation Geotechnics, 2024, 47: 101279
doi: 10.1016/j.trgeo.2024.101279
|
| 5 |
黄达, 金华辉, 吴雄伟 碎石土强夯加固效果荷载试验分析[J]. 西南交通大学学报, 2013, 48 (3): 435- 440,454 HUANG Da, JIN Huahui, WU Xiongwei Plate load test investigation of dynamic compaction effect of gravel soil[J]. Journal of Southwest Jiaotong University, 2013, 48 (3): 435- 440,454
|
| 6 |
黄达, 金华辉 土石比对碎石土强夯地基加固效果影响规律瑞利波检测分析[J]. 岩土力学, 2012, 33 (10): 3067- 3072 HUANG Da, JIN Huahui Influences of soil-rock ratio on foundation with detritus soil under dynamic compaction based on Rayleigh wave detection[J]. Rock and Soil Mechanics, 2012, 33 (10): 3067- 3072
|
| 7 |
周冲. 土基强夯动力加固机理与效果评价研究 [D]. 济南: 山东大学, 2021. ZHOU Chong. Research of strengthening mechanism and effect evaluation of foundation by dynamic compaction [D]. Jinan: Shandong University, 2021.
|
| 8 |
杨溢, 卢杰, 杨志全, 等 花管注浆加固松散碎石土层试验与效果参数预测模型[J]. 农业工程学报, 2018, 34 (24): 151- 157 YANG Yi, LU Jie, YANG Zhiquan, et al Experiments and effect parameters prediction model of reinforcement loose gravel soil-layers by flower pipe grouting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (24): 151- 157
|
| 9 |
雷进生. 碎石土地基注浆加固力学行为研究 [D]. 武汉: 中国地质大学, 2013. LEI Jinsheng. Research on mechanical behavior of grout in gravelly soil foundations [D]. Wuhan: China University of Geosciences, 2013.
|
| 10 |
路乔, 杨智超, 杨志全, 等 考虑扩散路径的宾汉姆流体渗透注浆机制[J]. 岩土力学, 2022, 43 (2): 385- 394 LU Qiao, YANG Zhichao, YANG Zhiquan, et al Penetration grouting mechanism of Binham fluid considering diffusion paths[J]. Rock and Soil Mechanics, 2022, 43 (2): 385- 394
|
| 11 |
彭鹏, 彭峰, 孙振宇, 等 基于分形理论和Mori-Tanaka方法的颗粒土渗透注浆加固体性能预测方法及应用[J]. 力学学报, 2022, 54 (11): 3099- 3112 PENG Peng, PENG Feng, SUN Zhenyu, et al Property prediction methods of granular soil penetration grouting reinforced body based on fractal theory and moritanaka method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (11): 3099- 3112
|
| 12 |
KHAN M I Robust prediction models for flow and compressive strength of sustainable cement grouts for grouted macadam pavement using RSM[J]. Construction and Building Materials, 2024, 448: 138205
doi: 10.1016/j.conbuildmat.2024.138205
|
| 13 |
孙兆辉, 王铁斌, 许志鸿, 等 水泥稳定碎石强度影响因素的试验研究[J]. 建筑材料学报, 2006, 9 (3): 285- 290 SUN Zhaohui, WANG Tiebin, XU Zhihong, et al Trial study on influence factors of cement-stabilized macadam strength[J]. Journal of Building Materials, 2006, 9 (3): 285- 290
|
| 14 |
吕松涛, 郑健龙, 仲文亮 养生期水泥稳定碎石强度、模量及疲劳损伤特性[J]. 中国公路学报, 2015, 28 (9): 9- 15,45 LV Songtao, ZHENG Jianlong, ZHONG Wenliang Characteristics of strength, modulus and fatigue damage for cement stabilized macadam in curing period[J]. China Journal of Highway and Transport, 2015, 28 (9): 9- 15,45
|
| 15 |
WANG C, LIU S, LIU L, et al Deformation properties improvement of cement stabilized gravel using rubber: laboratory and field study[J]. Construction and Building Materials, 2023, 393: 131975
doi: 10.1016/j.conbuildmat.2023.131975
|
| 16 |
余睿, 丁梦茜, 程书凯, 等 海洋环境混凝土材料的耐久性评价及对策分析[J]. 防护工程, 2020, 42 (2): 71- 78 YU Rui, DING Mengxi, CHENG Shukai, et al Durability assessment and strategy analysis of concrete materials in marine environment[J]. Protective Engineering, 2020, 42 (2): 71- 78
|
| 17 |
肖建庄, 李佳彬, 孙振平, 等 再生混凝土的抗压强度研究[J]. 同济大学学报: 自然科学版, 2004, 32 (12): 1558- 1561 XIAO Jianzhuang, LI Jiabin, SUN Zhenping, et al Study on compressive strength of recycled aggregate concrete[J]. Journal of Tongji University: Natural Science, 2004, 32 (12): 1558- 1561
|
| 18 |
王佩玺, 许金余, 白二雷, 等 水热循环作用对红砂岩动态力学特性的影响规律研究[J]. 防护工程, 2018, 40 (6): 5- 10 WANG Peixi, XU Jinyu, BAI Erlei, et al Study on the dynamic mechanics behavior of red sandstone subjected to heating and water-cooling cycles[J]. Protective Engineering, 2018, 40 (6): 5- 10
|
| 19 |
乔丽苹, 刘建, 冯夏庭 砂岩水物理化学损伤机制研究[J]. 岩石力学与工程学报, 2007, 26 (10): 2117- 2124 QIAO Liping, LIU Jian, FENG Xiating Study on damage mechanism of sandstone under hydro-physico-chemical effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (10): 2117- 2124
|
| 20 |
彭瑞东, 谢和平, 鞠杨 砂岩拉伸过程中的能量耗散与损伤演化分析[J]. 岩石力学与工程学报, 2007, 26 (12): 2526- 2531 PENG Ruidong, XIE Heping, JU Yang Analysis of energy dissipation and damage evolution of sandstone during tensile process[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (12): 2526- 2531
|
| 21 |
FU T, SARACHO A C, HAIGH S K Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review[J]. Biogeotechnics, 2023, 1 (1): 100002
doi: 10.1016/j.bgtech.2023.100002
|
| 22 |
LI Y, LI Y, GUO Z, et al Durability of MICP-reinforced calcareous sand in marine environments: laboratory and field experimental study[J]. Biogeotechnics, 2023, 1 (2): 100018
doi: 10.1016/j.bgtech.2023.100018
|
| 23 |
LI Y, GUO Z, WANG L, et al Numerical study of MICP infiltration and mineralization in unsaturated soils: CaCO3 distribution and critical depth[J]. International Journal of Geomechanics, 2024, 24 (11): 04024258
doi: 10.1061/IJGNAI.GMENG-9257
|
| 24 |
LIU H, ZHANG J, XIAO Y, et al Bacterial attachment by crystal in MICP[J]. Biogeotechnics, 2024, 2 (4): 100109
doi: 10.1016/j.bgtech.2024.100109
|
| 25 |
LIU H, CHU J, KAVAZANJIAN E Biogeotechnics: a new frontier in geotechnical engineering for sustainability[J]. Biogeotechnics, 2023, 1: 100001
doi: 10.1016/j.bgtech.2023.100001
|
| 26 |
XIAO Y, ZHANG Z, STUEDLEIN A W, et al Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (12): 04021149
doi: 10.1061/(ASCE)GT.1943-5606.0002666
|
| 27 |
DELENNE J Y, TOPIN V, RADJAI F Failure of cemented granular materials under simple compression: experiments and numerical simulations[J]. Acta Mechanica, 2009, 205 (1): 9- 21
|
| 28 |
WANG W, PAN J, JIN F, et al Effect of cement matrix on mechanical properties of cemented granular materials[J]. Powder Technology, 2019, 350: 107- 116
doi: 10.1016/j.powtec.2019.03.040
|
| 29 |
QIN W, JIN F, YANG S, et al X-ray microtomography study on the cemented structure of cemented granular materials[J]. Journal of Advanced Concrete Technology, 2023, 21 (1): 1- 16
doi: 10.3151/jact.21.1
|
| 30 |
HE J, JIANG H, ZHOU Y, et al Elementary behavior of dual-particle composites cemented by self-compacting mortar: experimental and constitutive modelling[J]. Construction and Building Materials, 2022, 320: 126232
doi: 10.1016/j.conbuildmat.2021.126232
|
| 31 |
王卫. 浆体附着规律、胶结结构特征与胶结颗粒料力学特性研究 [D]. 北京: 清华大学, 2019. WANG Wei. Study on adhesion rule of cement paste, characteristics of cementing structure and mechanical behavior of cemented granular materials [D]. Beijing: Tsinghua University, 2019.
|
| 32 |
QIN W, LIN N, JIN F, et al Effects of cementing matrix characteristics and particle size on the adhesion rule and mechanical properties of cemented granular materials[J]. Construction and Building Materials, 2024, 411: 134630
doi: 10.1016/j.conbuildmat.2023.134630
|
| 33 |
JORNE F, HENRIQUES F M A, BALTAZAR L G Injection capacity of hydraulic lime grouts in different porous media[J]. Materials and Structures, 2015, 48 (7): 2211- 2233
doi: 10.1617/s11527-014-0304-9
|
| 34 |
OZGUMUS T, MOBEDI M, OZKOL U Determination of kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8 (2): 308- 318
doi: 10.1080/19942060.2014.11015516
|
| 35 |
ZHANG N, HEDAYAT A, FIGUEROA L, et al Physical, mechanical, cracking, and damage properties of mine tailings-based geopolymer: experimental and numerical investigations[J]. Journal of Building Engineering, 2023, 75: 107075
doi: 10.1016/j.jobe.2023.107075
|
| 36 |
AL-DOSSARY A A S, AWED A M, GABR A R, et al Performance enhancement of road base material using calcium carbide residue and sulfonic acid dilution as a geopolymer stabilizer[J]. Construction and Building Materials, 2023, 364: 129959
doi: 10.1016/j.conbuildmat.2022.129959
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|