Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (12): 2627-2634    DOI: 10.3785/j.issn.1008-973X.2025.12.017
交通工程、土木工程     
地聚物浆体自重入渗胶结碎石的力学性能
杨祖强(),国振*(),刘恒宇,董常瑞,吕蓓凤
浙江大学 建筑工程学院,浙江 杭州 310058
Mechanical properties of geopolymer slurry-cemented crushed stones by self-gravity infiltration
Zuqiang YANG(),Zhen GUO*(),Hengyu LIU,Changrui DONG,Beifeng LV
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1570 KB)   HTML
摘要:

公路受灾损毁后的快速抢通是保障灾后救援顺利进行的关键环节,针对这一需求,本研究提出地聚物浆体自重入渗胶结碎石的新型快速修复方式,通过开展室内试验研究地聚物浆体在自重作用下入渗胶结碎石的过程,并对试样的胶结率、单轴抗压强度进行测试. 在此基础上,分析碎石粒径、孔隙比以及胶结基质流变特性对胶结率的影响规律,并探讨试样的力学性能发展特征. 引入无量纲常数对试样的可渗度进行表征并进一步提出综合考虑上述影响因素的胶结率预测公式. 研究结果表明:试样的胶结率受碎石粒径、孔隙比和胶结基质流变特性影响显著;随着胶结率的提高,试样单轴抗压强度随之提高,试样3 h抗压强度最高达到6.72 MPa,6 h抗压强度最高达到12.44 MPa;试样破坏模式由剪切破坏逐渐转变为劈裂破坏,胶结基质在碎石空隙中的分布类型主要包括接触胶结、非接触胶结和堵塞.

关键词: 胶结颗粒材料快速加固地聚物胶结率力学特性破坏模式    
Abstract:

The rapid repair of disaster-damaged highways is crucial for post-disaster rescue operations. To address this need, a novel rapid repair method using geopolymer slurry to infiltrate and cement crushed stone under self-gravity was introduced. Laboratory tests were used to investigate this process, measuring the specimens’ cementation rate and uniaxial compressive strength. On this basis, the influence of crushed stone particle size, void ratio, and the rheological properties of the cemented matrix on the cementation rate was analyzed, and the development characteristics of the mechanical properties of the specimens were discussed. A dimensionless constant was introduced to characterize the permeability of the specimens, and a predictive formula for the cementation rate that comprehensively considered the above influencing factors was further proposed. The research results indicated that the cementation rate of the specimens was significantly affected by the crushed stone particle size, void ratio, and rheological properties of the cemented matrix. Uniaxial compressive strength was increased with the increase of the cementation rates, reaching up to 6.72 MPa at 3 hours and 12.44 MPa at 6 hours. Failure modes transitioned from shear to splitting, with cemented matrix distribution types being contact cementation, non-contact cementation, and clogging.

Key words: cemented granular material    rapid reinforcement    geopolymer    cementation rate    mechanical properties    failure mode
收稿日期: 2024-12-08 出版日期: 2025-11-25
CLC:  TU 472.4  
基金资助: 国家自然科学基金资助项目(52401344);博士后基金资助项目(GZC20241516).
通讯作者: 国振     E-mail: 22212021@zju.edu.cn;nehzoug@163.com
作者简介: 杨祖强(2000—),男,硕士生,从事地聚物胶结碎石研究. orcid.org/0009-0001-7378-0314. E-mail:22212021@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨祖强
国振
刘恒宇
董常瑞
吕蓓凤

引用本文:

杨祖强,国振,刘恒宇,董常瑞,吕蓓凤. 地聚物浆体自重入渗胶结碎石的力学性能[J]. 浙江大学学报(工学版), 2025, 59(12): 2627-2634.

Zuqiang YANG,Zhen GUO,Hengyu LIU,Changrui DONG,Beifeng LV. Mechanical properties of geopolymer slurry-cemented crushed stones by self-gravity infiltration. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2627-2634.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.017        https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2627

图 1  试验所用3组粒径碎石
图 2  地聚物前驱体
前驱体wB/%
SiO2Al2O3CaOMgOK2OFe2O3Na2OSO3其他
粒化高炉矿渣28.0015.0043.008.000.500.300.402.002.80
硅灰99.000.300.030.030.020.010.61
粉煤灰47.0037.004.000.601.005.000.502.002.90
表 1  前驱体化学组成成分
图 3  粒化高炉矿渣、粉煤灰、硅灰的粒度分布
状态M波美度w(Na2O)w(SiO2)wspH值
液体2.35013.53043.510~13
表 2  水玻璃参数
图 4  胶结基质力学特性
组别LSρ/(g·cm?3)Si/minSf/minFV/mmτ0/PaK/(Pa·sn)n
GP-550.551.987182220260.083.801.27
GP-600.601.956192320838.433.301.17
GP-650.651.938202521329.592.591.13
表 3  地聚物胶结基质的工作性能
图 5  胶结碎石试模
图 6  地聚物自重入渗试验过程
组别ePS/mmLS
1) 注:组别编号中的N和D分别代表试样孔隙比为1.00和0.75,C、M和F分别代表粒径为15~20、10~15和5~10 mm.
NC-551)1.0015~200.55
NC-600.60
NC-650.65
NM-5510~150.55
NM-600.60
NM-650.65
NF-555~100.55
NF-600.60
NF-650.65
DC-550.750.55
DC-6015~200.60
DC-650.65
DM-550.55
DM-6010~150.60
DM-650.65
DF-550.55
DF-605~100.60
DF-650.65
表 4  地聚物自重入渗胶结碎石试验方案
组别FV/mmτ0/Paω/%
注:1)胶结率为试样的平均胶结率,括号中的数值为平均差;2)“—”代表浆液无法完全入渗
NC-5520260.0819.0(1.4)1)
NC-6020838.439.1(0.2)
NC-6521329.596.7(0.4)
NM-5520260.0845.1(0.8)
NM-6020838.4319.2(0.8)
NM-6521329.5910.8(0.5)
NF-5520260.082)
NF-6020838.43
NF-6521329.5930.0(1.6)
DC-5520260.0830.8(1.6)
DC-6020838.4313.5(0.7)
DC-6521329.597.5(0.2)
DM-5520260.08
DM-6020838.4329.3(0.9)
DM-6521329.5915.9(1.3)
DF-5520260.08
DF-6020838.43
DF-6521329.59
表 5  地聚物胶结碎石试样胶结率
图 7  地聚物胶结碎石试样的胶结率与可渗度的关系
图 8  不同胶结率下地聚物胶结碎石试样胶结基质分布形貌
图 9  地聚物胶结碎石试样应力应变曲线及破坏形态
图 10  地聚物胶结碎石试样抗压强度
图 11  地聚物胶结碎石试样抗压强度与胶结率的关系
1 张杰茹. 公路受灾损毁应急恢复策略优化研究 [D]. 重庆: 重庆科技学院, 2023.
ZHANG Jieru. Study on optimization of emergency recovery strategy for highway damage [D]. Chongqing: Chongqing University of Science and Technology, 2013.
2 郑刚, 龚晓南, 谢永利, 等 地基处理技术发展综述[J]. 土木工程学报, 2012, 45 (2): 127- 146
ZHENG Gang, GONG Xiaonan, XIE Yongli, et al State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45 (2): 127- 146
3 谢康, 陈晓斌, 尧俊凯, 等 高铁路基填料振动压实试验参数标准化方法与应用研究[J]. 岩石力学与工程学报, 2023, 42 (7): 1799- 1810
XIE Kang, CHEN Xiaobin, YAO Junkai, et al Study on standardization method and application of vibration compaction test parameters of high-speed railway subgrade filler[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (7): 1799- 1810
4 XIE K, LI T F, ZHAO Y M, et al Microstructure evolution of coarse-grained soil fillers during subgrade compaction-operation period based on CT technology[J]. Transportation Geotechnics, 2024, 47: 101279
doi: 10.1016/j.trgeo.2024.101279
5 黄达, 金华辉, 吴雄伟 碎石土强夯加固效果荷载试验分析[J]. 西南交通大学学报, 2013, 48 (3): 435- 440,454
HUANG Da, JIN Huahui, WU Xiongwei Plate load test investigation of dynamic compaction effect of gravel soil[J]. Journal of Southwest Jiaotong University, 2013, 48 (3): 435- 440,454
6 黄达, 金华辉 土石比对碎石土强夯地基加固效果影响规律瑞利波检测分析[J]. 岩土力学, 2012, 33 (10): 3067- 3072
HUANG Da, JIN Huahui Influences of soil-rock ratio on foundation with detritus soil under dynamic compaction based on Rayleigh wave detection[J]. Rock and Soil Mechanics, 2012, 33 (10): 3067- 3072
7 周冲. 土基强夯动力加固机理与效果评价研究 [D]. 济南: 山东大学, 2021.
ZHOU Chong. Research of strengthening mechanism and effect evaluation of foundation by dynamic compaction [D]. Jinan: Shandong University, 2021.
8 杨溢, 卢杰, 杨志全, 等 花管注浆加固松散碎石土层试验与效果参数预测模型[J]. 农业工程学报, 2018, 34 (24): 151- 157
YANG Yi, LU Jie, YANG Zhiquan, et al Experiments and effect parameters prediction model of reinforcement loose gravel soil-layers by flower pipe grouting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (24): 151- 157
9 雷进生. 碎石土地基注浆加固力学行为研究 [D]. 武汉: 中国地质大学, 2013.
LEI Jinsheng. Research on mechanical behavior of grout in gravelly soil foundations [D]. Wuhan: China University of Geosciences, 2013.
10 路乔, 杨智超, 杨志全, 等 考虑扩散路径的宾汉姆流体渗透注浆机制[J]. 岩土力学, 2022, 43 (2): 385- 394
LU Qiao, YANG Zhichao, YANG Zhiquan, et al Penetration grouting mechanism of Binham fluid considering diffusion paths[J]. Rock and Soil Mechanics, 2022, 43 (2): 385- 394
11 彭鹏, 彭峰, 孙振宇, 等 基于分形理论和Mori-Tanaka方法的颗粒土渗透注浆加固体性能预测方法及应用[J]. 力学学报, 2022, 54 (11): 3099- 3112
PENG Peng, PENG Feng, SUN Zhenyu, et al Property prediction methods of granular soil penetration grouting reinforced body based on fractal theory and moritanaka method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (11): 3099- 3112
12 KHAN M I Robust prediction models for flow and compressive strength of sustainable cement grouts for grouted macadam pavement using RSM[J]. Construction and Building Materials, 2024, 448: 138205
doi: 10.1016/j.conbuildmat.2024.138205
13 孙兆辉, 王铁斌, 许志鸿, 等 水泥稳定碎石强度影响因素的试验研究[J]. 建筑材料学报, 2006, 9 (3): 285- 290
SUN Zhaohui, WANG Tiebin, XU Zhihong, et al Trial study on influence factors of cement-stabilized macadam strength[J]. Journal of Building Materials, 2006, 9 (3): 285- 290
14 吕松涛, 郑健龙, 仲文亮 养生期水泥稳定碎石强度、模量及疲劳损伤特性[J]. 中国公路学报, 2015, 28 (9): 9- 15,45
LV Songtao, ZHENG Jianlong, ZHONG Wenliang Characteristics of strength, modulus and fatigue damage for cement stabilized macadam in curing period[J]. China Journal of Highway and Transport, 2015, 28 (9): 9- 15,45
15 WANG C, LIU S, LIU L, et al Deformation properties improvement of cement stabilized gravel using rubber: laboratory and field study[J]. Construction and Building Materials, 2023, 393: 131975
doi: 10.1016/j.conbuildmat.2023.131975
16 余睿, 丁梦茜, 程书凯, 等 海洋环境混凝土材料的耐久性评价及对策分析[J]. 防护工程, 2020, 42 (2): 71- 78
YU Rui, DING Mengxi, CHENG Shukai, et al Durability assessment and strategy analysis of concrete materials in marine environment[J]. Protective Engineering, 2020, 42 (2): 71- 78
17 肖建庄, 李佳彬, 孙振平, 等 再生混凝土的抗压强度研究[J]. 同济大学学报: 自然科学版, 2004, 32 (12): 1558- 1561
XIAO Jianzhuang, LI Jiabin, SUN Zhenping, et al Study on compressive strength of recycled aggregate concrete[J]. Journal of Tongji University: Natural Science, 2004, 32 (12): 1558- 1561
18 王佩玺, 许金余, 白二雷, 等 水热循环作用对红砂岩动态力学特性的影响规律研究[J]. 防护工程, 2018, 40 (6): 5- 10
WANG Peixi, XU Jinyu, BAI Erlei, et al Study on the dynamic mechanics behavior of red sandstone subjected to heating and water-cooling cycles[J]. Protective Engineering, 2018, 40 (6): 5- 10
19 乔丽苹, 刘建, 冯夏庭 砂岩水物理化学损伤机制研究[J]. 岩石力学与工程学报, 2007, 26 (10): 2117- 2124
QIAO Liping, LIU Jian, FENG Xiating Study on damage mechanism of sandstone under hydro-physico-chemical effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (10): 2117- 2124
20 彭瑞东, 谢和平, 鞠杨 砂岩拉伸过程中的能量耗散与损伤演化分析[J]. 岩石力学与工程学报, 2007, 26 (12): 2526- 2531
PENG Ruidong, XIE Heping, JU Yang Analysis of energy dissipation and damage evolution of sandstone during tensile process[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (12): 2526- 2531
21 FU T, SARACHO A C, HAIGH S K Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review[J]. Biogeotechnics, 2023, 1 (1): 100002
doi: 10.1016/j.bgtech.2023.100002
22 LI Y, LI Y, GUO Z, et al Durability of MICP-reinforced calcareous sand in marine environments: laboratory and field experimental study[J]. Biogeotechnics, 2023, 1 (2): 100018
doi: 10.1016/j.bgtech.2023.100018
23 LI Y, GUO Z, WANG L, et al Numerical study of MICP infiltration and mineralization in unsaturated soils: CaCO3 distribution and critical depth[J]. International Journal of Geomechanics, 2024, 24 (11): 04024258
doi: 10.1061/IJGNAI.GMENG-9257
24 LIU H, ZHANG J, XIAO Y, et al Bacterial attachment by crystal in MICP[J]. Biogeotechnics, 2024, 2 (4): 100109
doi: 10.1016/j.bgtech.2024.100109
25 LIU H, CHU J, KAVAZANJIAN E Biogeotechnics: a new frontier in geotechnical engineering for sustainability[J]. Biogeotechnics, 2023, 1: 100001
doi: 10.1016/j.bgtech.2023.100001
26 XIAO Y, ZHANG Z, STUEDLEIN A W, et al Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (12): 04021149
doi: 10.1061/(ASCE)GT.1943-5606.0002666
27 DELENNE J Y, TOPIN V, RADJAI F Failure of cemented granular materials under simple compression: experiments and numerical simulations[J]. Acta Mechanica, 2009, 205 (1): 9- 21
28 WANG W, PAN J, JIN F, et al Effect of cement matrix on mechanical properties of cemented granular materials[J]. Powder Technology, 2019, 350: 107- 116
doi: 10.1016/j.powtec.2019.03.040
29 QIN W, JIN F, YANG S, et al X-ray microtomography study on the cemented structure of cemented granular materials[J]. Journal of Advanced Concrete Technology, 2023, 21 (1): 1- 16
doi: 10.3151/jact.21.1
30 HE J, JIANG H, ZHOU Y, et al Elementary behavior of dual-particle composites cemented by self-compacting mortar: experimental and constitutive modelling[J]. Construction and Building Materials, 2022, 320: 126232
doi: 10.1016/j.conbuildmat.2021.126232
31 王卫. 浆体附着规律、胶结结构特征与胶结颗粒料力学特性研究 [D]. 北京: 清华大学, 2019.
WANG Wei. Study on adhesion rule of cement paste, characteristics of cementing structure and mechanical behavior of cemented granular materials [D]. Beijing: Tsinghua University, 2019.
32 QIN W, LIN N, JIN F, et al Effects of cementing matrix characteristics and particle size on the adhesion rule and mechanical properties of cemented granular materials[J]. Construction and Building Materials, 2024, 411: 134630
doi: 10.1016/j.conbuildmat.2023.134630
33 JORNE F, HENRIQUES F M A, BALTAZAR L G Injection capacity of hydraulic lime grouts in different porous media[J]. Materials and Structures, 2015, 48 (7): 2211- 2233
doi: 10.1617/s11527-014-0304-9
34 OZGUMUS T, MOBEDI M, OZKOL U Determination of kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8 (2): 308- 318
doi: 10.1080/19942060.2014.11015516
35 ZHANG N, HEDAYAT A, FIGUEROA L, et al Physical, mechanical, cracking, and damage properties of mine tailings-based geopolymer: experimental and numerical investigations[J]. Journal of Building Engineering, 2023, 75: 107075
doi: 10.1016/j.jobe.2023.107075
36 AL-DOSSARY A A S, AWED A M, GABR A R, et al Performance enhancement of road base material using calcium carbide residue and sulfonic acid dilution as a geopolymer stabilizer[J]. Construction and Building Materials, 2023, 364: 129959
doi: 10.1016/j.conbuildmat.2022.129959
[1] 成辉,付宏渊,曾铃,于晓伟,罗锦涛,刘杰. 考虑干湿循环路径的粉砂质泥岩力学特性及本构模型[J]. 浙江大学学报(工学版), 2024, 58(9): 1912-1922.
[2] 谢国庆,王密,孔德文. 新型高强硅酸盐墙板钢框架抗震性能[J]. 浙江大学学报(工学版), 2023, 57(7): 1402-1409.
[3] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[4] 张雷,徐海军,邹腾安,徐小军,常雨康. 嵌套Z轴式水下矢量推进系统建模与特性分析[J]. 浙江大学学报(工学版), 2020, 54(3): 450-458.
[5] 余松霖,柯瀚,詹良通,孟涛,陈云敏,杨策. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376.
[6] 褚云朋,王秀丽,姚勇. 冷弯薄壁型钢墙体-楼板节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 732-742.
[7] 邵惠锋, 贺永, 傅建中. 增材制造可降解人工骨的研究进展——从外形定制到性能定制[J]. 浙江大学学报(工学版), 2018, 52(6): 1035-1057.
[8] 梅振宇, 章伟. 基于复杂性测度的泊位占有率序列动力学分析[J]. 浙江大学学报(工学版), 2018, 52(4): 727-734.
[9] 欧阳雯欣, 王清远, 石宵爽, 谭莲飞, 彭泽维. PBL剪力连接件的疲劳试验与分析[J]. J4, 2012, 46(6): 1090-1096.
[10] 艾青林,黄伟锋,祖顺江. 基于螺旋理论的钢带并联机器人力学特性数值分析[J]. J4, 2011, 45(9): 1650-1656.
[11] 沈润杰 何闻. 大型宽频带水下振动台流固耦合动力学特性的研究[J]. J4, 2006, 40(4): 724-728.