Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1647-1658    DOI: 10.3785/j.issn.1008-973X.2024.08.012
交通工程、土木工程     
平行流交叉口车道控制与信号配时组合优化
宋浪1,2(),王健1,3,*(),杨璐1,安实1
1. 哈尔滨工业大学 交通科学与工程学院,黑龙江 哈尔滨 150090
2. 国家山区公路工程技术研究中心,重庆 400067
3. 哈尔滨工业大学 经济与管理学院,黑龙江 哈尔滨 150001
Combined optimization of lane-based control and signal timing at parallel flow intersection
Lang SONG1,2(),Jian WANG1,3,*(),Lu YANG1,Shi AN1
1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2. National Engineering and Research Center for Mountainous Highways, Chongqing 400067, China
3. School of Management, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(1824 KB)   HTML
摘要:

为了提升平行流交叉口实际应用的灵活性,提出车道控制与信号配时组合优化方法,将单向、非对称双向、对称双向、三向、四向设置与布设方向组合共16种方案整合到优化模型中,通过修正交通冲突矩阵自动生成相位相序方案. 构建混合整数线性规划模型,实现交叉口设置方案选择、车道分配和信号配时的组合优化. 结果表明,在各种流量场景下,对称双向、三向、四向设置方案相较于常规交叉口分别能够提升约20%、20%、50%的通行能力,单向、非对称双向设置方案通行能力与常规交叉口接近,说明平行流交叉口不宜采用单向、非对称双向设置. 四向设置方案通行能力的提升幅度最大,最大值能达到70.51%. 对称双向和三向设置方案的通行能力提升相差不大,但三向设置在不对称流量场景中的表现优于对称双向设置.

关键词: 交通工程控制方法混合整数线性规划平行流交叉口移位左转    
Abstract:

A combined optimization method for lane control and signal timing was proposed in order to enhance the flexibility of parallel flow intersections in practical application. Sixteen configurations including one-way, asymmetric two-way, symmetric two-way, three-way, and four-way settings with directional arrangements were integrated into an optimization model, and phase sequences were automatically generated by modifying the traffic conflict matrix. A mixed integer linear programming model was developed to optimize the intersection setting selection, lane allocation, and signal timing in combination. Results show that the symmetric two-way, three-way, and four-way settings increase traffic capacity by approximately 20%, 20%, and 50% respectively compared to conventional intersections under various traffic scenarios. The capacities of the one-way and asymmetric two-way settings are close to those of conventional intersections, indicating that one-way and asymmetric two-way settings are not suitable for parallel flow intersections. The four-way setting exhibits the largest increase in capacity, with a maximum improvement of 70.51%. The traffic capacities of symmetric two-way and three-way settings are similar, while the three-way setting performs better in asymmetric traffic scenarios than the symmetric two-way setting.

Key words: traffic engineering    control method    mixed integer linear programming    parallel flow intersection    displaced left-turn
收稿日期: 2023-07-18 出版日期: 2024-07-23
CLC:  U 491  
基金资助: 重庆市自然科学基金资助项目(CSTB2023NSCQ-MSX0387);重庆市技术创新与应用发展专项重点资助项目(CSTB2022TIAD-KPX0104);国家自然科学基金重大研究计划资助项目(91846301).
通讯作者: 王健     E-mail: lang_song@qq.com;wang_jian@hit.edu.cn
作者简介: 宋浪(1996—),男,博士生,从事交通控制和智能交通的研究. orcid.org/0000-0003-3038-129X. E-mail:lang_song@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋浪
王健
杨璐
安实

引用本文:

宋浪,王健,杨璐,安实. 平行流交叉口车道控制与信号配时组合优化[J]. 浙江大学学报(工学版), 2024, 58(8): 1647-1658.

Lang SONG,Jian WANG,Lu YANG,Shi AN. Combined optimization of lane-based control and signal timing at parallel flow intersection. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1647-1658.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.012        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1647

图 1  平行流交叉口几何设计及车流组织的示意图
图 2  常规交叉口各流向的交通冲突示意图
图 3  移位左转设计主预信号绿波带示意图
参数数值参数数值参数数值
$ {P_1} $106$ {P_2} $103$ {P_3} $1
$ {g_{\min }} $/s10$ \gamma $/s4$ M $106
$ {C_{\min }} $/s60$ {C_{\max }} $/s120$ {d_{i,j}} $/(m·pcu?1)7
$ {b_{\min }} $/s10$ {L_{j,{\text{DLT}}}} $/m100$ {s_{i,j}} $/(pcu·h?1)1 500
$ {N_j} $10$ {\upsilon _i} $/(km·h?1)30
表 1  算例中优化模型输入参数及取值
图 4  各方案的交叉口几何设计优化结果
设置方案$ t $主信号西预信号南预信号东预信号北预信号C
1234567823456781
常规交叉口启亮时刻58800185880018120
绿灯时长1836143618361436
结束时刻80018588001858
单向启亮时刻0222289022678010850120
绿灯时长18415427184118365854
结束时刻2267800226789050108
非对称双向启亮时刻0222280802262801044629103120
绿灯时长183654365836143658547042
结束时刻226280022628004610410329
对称双向启亮时刻5390901753909017390390120
绿灯时长334343323343433277357735
结束时刻9017175390171753039039
三向启亮时刻034347777343477102604610310260120
绿灯时长3039393973393939743853597438
结束时刻34777703477770601021034660102
四向启亮时刻600060600060894329103894329103120
绿灯时长56565656565656567042704270427042
结束时刻060600060600438910329438910329
表 2  各方案的交叉口信号配时优化结果
设置方案常规设计可展宽常规设计不可展宽常规设计可展宽
$ \mu $$ {\varphi _1} $/%$ B $/s$ \mu $$ {\varphi _1} $/%$ B $/s$ V $/(pcu·h?1)$ \phi $/s$ {\varphi _2} $/%
常规交叉口1.13029.390.92927.247 19243.24
单向1.125?0.4832.321.0007.6931.237 19443.991.73
非对称双向1.125?0.4834.291.08316.6732.127 19841.07?5.02
对称双向1.35019.4235.731.28638.4638.567 19137.13?14.13
三向1.2278.5738.681.22732.1736.977 20035.95?16.86
四向1.75054.8147.601.75088.4647.607 19728.33?34.48
表 3  各方案的交叉口评价指标的对比结果
序号X轴参数及
取值范围
Y轴参数及取值范围Z轴参数备注
1左转比例10%~50%单向流量倍数增加(西向与南向、东向、
北向的流量比值)1.0~2.0
通行能力提升比例,
以常规交叉口为基准
南向、东向、北向流量相同
2非对称双向流量倍数增加(西向、南向与东向、
北向的流量比值)1.0~2.0
西向、南向流量相同,东向、北向流量相同
3对称双向流量倍数增加(西向、东向与南向、
北向的流量比值)1.0~2.0
西向、东向流量相同,南向、北向流量相同
4三向流量倍数增加(西向、南向、东向与
北向的流量比值)1.0~2.0
西向、南向、东向流量相同
表 4  各种实验案例X、Y、Z轴的参数设计
图 5  各方案通行能力提升比例与单向流量倍数、左转比例的分布
图 6  各方案通行能力提升比例与非对称双向流量倍数、左转比例的分布
图 7  各方案通行能力提升比例与对称双向流量倍数、左转比例的分布
图 8  各方案通行能力提升比例与三向流量倍数、左转比例的分布
1 EL E M, SAYED T Analysis of unconventional arterial intersection designs (UAIDs): state-of-the-art methodologies and future research directions[J]. Transportmetrica A: Transport Science, 2013, 9 (10): 860- 895
doi: 10.1080/18128602.2012.672344
2 卢凯, 尹帅帅, 江书妍, 等 考虑交织路段掉头车流的邻近交叉口信号协调控制[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1618- 1628
LU Kai, YIN Shuaishuai, JIANG Shuyan, et al Coordinated signal control for adjacent intersections considering U-turn movements at interweaving road sections[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1618- 1628
3 WU J, LIU P, ZHOU Y, et al Stationary condition based performance analysis of the contraflow left-turn lane design considering the influence of the upstream intersection[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102919
doi: 10.1016/j.trc.2020.102919
4 郭满, 梅振宇, 章立辉 自动车轨迹优化以实现分转向车流串联交叉口控制[J]. 浙江大学学报: 工学版, 2020, 54 (2): 275- 282
GUO Man, MEI Zhenyu, ZHANG Lihui Trajectory optimization of connected and autonomous vehicles to achieve tandem intersection control[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 275- 282
5 ALZOUBAIDI M, ZLATKOVIC M Operational assessment of continuous flow intersections in a connected vehicle environment[J]. Transportation Planning and Technology, 2022, 45 (6): 524- 543
doi: 10.1080/03081060.2022.2136177
6 STEYN H, BUGG Z, RAY B, et al. Displaced left turn intersection: informational guide [R]. Washington DC: U. S. Federal Highway Administration, 2014.
7 邓明君, 朱腾洲 移位左转交叉口研究进展[J]. 科学技术与工程, 2021, 21 (1): 10- 19
DENG Mingjun, ZHU Tengzhou Research progress on displaced left-turn intersection[J]. Science Technology and Engineering, 2021, 21 (1): 10- 19
8 安实, 宋浪, 王健, 等 非常规交叉口设计研究现状与展望[J]. 交通运输工程学报, 2020, 20 (4): 1- 20
AN Shi, SONG Lang, WANG Jian, et al Research status and prospect of unconventional arterial intersection design[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (4): 1- 20
9 DHATRAK A, EDARA P, BARED J G Performance analysis of parallel flow intersection and displaced left-turn intersection designs[J]. Transportation Research Record, 2010, 2171 (1): 33- 43
doi: 10.3141/2171-04
10 CHEONG S, RAHWANJI S, CHANG G L. Comparison of three unconventional arterial intersection designs: continuous flow intersection, parallel flow intersection, and upstream signalized crossover [C]// 11th International IEEE Conference on Intelligent Transportation Systems . New York: IEEE, 2008: 1-7.
11 PARSONS G F The parallel flow intersection: a new two-phase signal alternative[J]. ITE Journal, 2007, 77 (10): 28- 32
12 安实, 宋浪, 王健, 等 平行流交叉口信号控制策略及效益分析[J]. 交通运输系统工程与信息, 2020, 20 (3): 75- 82
AN Shi, SONG Lang, WANG Jian, et al Signal control strategy and benefit analysis of parallel flow intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (3): 75- 82
13 宋浪, 胡晓伟, 杨滨毓, 等 平行流交叉口左转非机动车钩形转弯优化设计[J]. 哈尔滨工业大学学报, 2023, 55 (3): 1- 9
SONG Lang, HU Xiaowei, YANG Binyu, et al Optimization design for left-turn non-motor vehicle crossing at parallel flow intersection with hook-turn[J]. Journal of Harbin Institute of Technology, 2023, 55 (3): 1- 9
doi: 10.11918/202111105
14 ABO-BAKR S, ESAWEY M E, OSAMA A Operational and safety performance evaluation of parallel flow intersection[J]. Transportation Research Record, 2022, 2676 (6): 61- 74
doi: 10.1177/03611981211070283
15 ZHAO J, MA W, HEAD K L, et al Optimal operation of displaced left-turn intersections: a lane-based approach[J]. Transportation Research Part C: Emerging Technologies, 2015, 61: 29- 48
doi: 10.1016/j.trc.2015.10.012
16 王旭, 安文娟, 王少飞, 等 T型交叉口移位左转几何设计及信号配时优化[J]. 公路交通技术, 2022, 38 (6): 149- 155
WANG Xu, AN Wenjuan, WANG Shaofei, et al Geometric design and signal timing optimization of displaced left-turn at T-shaped intersection[J]. Technology of Highway and Transport, 2022, 38 (6): 149- 155
17 赵靖, 徐海军, 高幸, 等 连续流交叉口左转非机动车优化设计方法[J]. 交通运输系统工程与信息, 2018, 18 (6): 178- 186
ZHAO Jing, XU Haijun, GAO Xing, et al Optimization design method of left-turn bicycles crossing for continuous flow intersections[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (6): 178- 186
18 JIANG X, GAO S Signal control method and performance evaluation of an improved displaced left-turn intersection design in unsaturated traffic conditions[J]. Transportmetrica B: Transport Dynamics, 2020, 8 (1): 264- 289
doi: 10.1080/21680566.2020.1764410
19 YANG X, CHENG Y Development of signal optimization models for asymmetric two-leg continuous flow intersections[J]. Transportation Research Part C: Emerging Technologies, 2017, 74: 306- 326
doi: 10.1016/j.trc.2016.11.021
20 SUN W, WU X, WANG Y, et al A continuous-flow-intersection-lite design and traffic control for oversaturated bottleneck intersections[J]. Transportation Research Part C: Emerging Technologies, 2015, 56: 18- 33
doi: 10.1016/j.trc.2015.03.011
21 WONG C K, HEYDECKER B G Optimal allocation of turns to lanes at an isolated signal-controlled junction[J]. Transportation Research Part B: Methodological, 2011, 45 (4): 667- 681
doi: 10.1016/j.trb.2010.12.001
22 安实, 宋浪, 王健, 等 平行流交叉口行人过街控制策略研究[J]. 交通运输系统工程与信息, 2020, 20 (5): 64- 71
AN Shi, SONG Lang, WANG Jian, et al Pedestrian crossing control strategy for parallel flow intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (5): 64- 71
23 徐海军 考虑自行车交通的非常规交叉口通行优化设计方法[J]. 交通与运输, 2021, 37 (3): 21- 25
XU Haijun Optimization design method for bicycles at tandem unconventional arterial intersections[J]. Traffic and Transportation, 2021, 37 (3): 21- 25
doi: 10.3969/j.issn.1671-3400.2021.03.006
[1] 何艳,孙轶琳,赵志健,疏阳. 融合碳激励潜变量的低碳出行方式选择模型[J]. 浙江大学学报(工学版), 2024, 58(8): 1628-1635.
[2] 刘鹏,路庆昌,秦汉,崔欣. 道路网络多阶段抗灾能力优化模型构建与应用[J]. 浙江大学学报(工学版), 2024, 58(1): 96-108.
[3] 卢凯,尹帅帅,江书妍,周志洁,李青. 考虑交织路段掉头车流的邻近交叉口信号协调控制[J]. 浙江大学学报(工学版), 2023, 57(8): 1618-1628.
[4] 潘义勇,管星宇. 基于分位数回归的随机优化速度跟驰模型[J]. 浙江大学学报(工学版), 2022, 56(8): 1553-1559.
[5] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[6] 余佳洁,季彦婕,卜卿,郑岳标. 考虑断点成本的长干线分段绿波控制方法[J]. 浙江大学学报(工学版), 2022, 56(4): 640-648.
[7] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[8] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[9] 卢凯,田鑫,林观荣,邓兴栋. 交叉口信号相位设置与配时同步优化模型[J]. 浙江大学学报(工学版), 2020, 54(5): 921-930.
[10] 曾佳棋,王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394.
[11] 张思佳,贾顺平,毛保华,麻存瑞,张桐. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 292-298.
[12] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460.
[13] 宿紫鹏, 杨磊, 杨家强, 高敏. 基于开关表决策的APF与TSC混合系统投切控制方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2201-2209.
[14] 商强, 林赐云, 杨兆升, 邴其春, 邢茹茹. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版), 2017, 51(7): 1339-1346.
[15] 刘美岐, 沈莉潇, 金盛. 考虑右转信号控制的共用车道通行能力模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1347-1354.