Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1628-1635    DOI: 10.3785/j.issn.1008-973X.2024.08.010
交通工程、土木工程     
融合碳激励潜变量的低碳出行方式选择模型
何艳1,2(),孙轶琳1,3,4,*(),赵志健4,疏阳1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江大学平衡建筑研究中心,浙江 杭州 310000
3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310013
4. 浙江大学 工程师学院,浙江 杭州 310058
Modeling low-carbon travel mode choice by incorporating carbon incentive latent variable
Yan HE1,2(),Yilin SUN1,3,4,*(),Zhijian ZHAO4,Yang SHU1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balanced Architecture, Zhejiang University, Hangzhou 310000, China
3. The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310013, China
4. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1212 KB)   HTML
摘要:

以计划行为理论与价值-信念-规范理论为理论基础,综合考虑影响出行者低碳出行意愿的潜变量,以分析出行者低碳出行行为及内在机理. 基于杭州市实证数据,建立多原因多指标模型,标定潜变量适配值. 构建混合选择模型与无潜变量的Logit模型,对比分析出行者工作日方式的选择行为. 建立二元混合选择模型,分析碳激励下高碳人群的出行行为转变. 结果表明,态度、知觉感知控制、激励态度等潜变量显著影响出行者的低碳出行意愿与出行方式选择,混合选择模型比无潜变量的Logit模型具有更好的拟合优度,预测精度提升了4.6%,碳激励下64.4%的高碳人群倾向于选择低碳出行,碳激励可以有效促进公众的出行方式转变,变量态度、出行时间在公众出行方式转变上存在一定的异质性.

关键词: 交通工程低碳出行方式选择碳激励混合选择模型    
Abstract:

The latent variables affecting travelers’ intention to low-carbon travel were comprehensively considered based on the theory of planned behavior and the theory of value-belief-norm in order to analyze travelers’ low-carbon travel behaviors and internal mechanisms. A multi-cause and multi-indicator model was constructed by using the empirical data of Hangzhou, and the values of latent variables were calibrated. A hybrid choice model and a Logit model without latent variables were constructed to compare and analyze travelers’ weekday mode choice behavior. A binary hybrid choice model was constructed to analyze the travel behavior shift of high carbon people under carbon incentives. Results show that the latent variables such as attitude, perceived behavioral control, and view of incentive significantly affect the travelers' willingness to travel in a low-carbon way and the choice of travel modes. The hybrid choice model has a better goodness-of-fit than the Logit model without latent variables, and the prediction accuracy improves by 4.6%. 64.4% of the high-carbon individuals tends to choose low-carbon modes under carbon incentives, showing that the carbon incentives can effectively promote travel modes shift behavior. There is some heterogeneity of the variables attitude and travel time in travel mode shift behavior.

Key words: transportation engineering    low-carbon travel    mode choice    carbon incentive    hybrid choice model
收稿日期: 2023-07-19 出版日期: 2024-07-23
CLC:  U 491  
基金资助: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2023C01240);国家自然科学基金资助项目(52131202).
通讯作者: 孙轶琳     E-mail: yanhe@zju.edu.cn;yilinsun@zju.edu.cn
作者简介: 何艳(1997—),女,硕士生,从事交通行为建模与分析的研究. orcid.org/0000-0003-3614-9301. E-mail:yanhe@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何艳
孙轶琳
赵志健
疏阳

引用本文:

何艳,孙轶琳,赵志健,疏阳. 融合碳激励潜变量的低碳出行方式选择模型[J]. 浙江大学学报(工学版), 2024, 58(8): 1628-1635.

Yan HE,Yilin SUN,Zhijian ZHAO,Yang SHU. Modeling low-carbon travel mode choice by incorporating carbon incentive latent variable. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1628-1635.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.010        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1628

图 1  混合选择模型的概念图
潜变量题项观测变量文献
态度(AT)AT1我认为低碳出行是安全的文献[6]
AT2我认为低碳出行经济实惠
AT3我认为低碳出行方便
主观准则(SN)SN1我的朋友或同事鼓励我使用低碳出行文献[20]
SN2我的朋友或同事经常选择低碳出行
SN3我的家人经常选择低碳出行
知觉感知控制(PBC)PBC1我认为实施低碳出行行为并不困难文献[6]
PBC2实施低碳出行几乎不会耽误我的时间
责任意识(AR)AR1政府和企业有责任保护环境,降低空气污染文献[22]
AR2无论别人如何出行,环保价值观和责任引导我使用低碳出行
AR3在日常出行中,我有责任选择低碳出行
后果意识(AC)AC1低碳出行可以降低污染文献[23]
AC2低碳出行可以节约能源
AC3低碳出行可以缓解城市交通拥堵
AC4低碳出行可以保护环境
激励态度(VI)VI1若存在低碳出行奖励,未来的日常出行我愿意优先使用低碳出行
VI2我认为低碳出行奖励可以鼓励我在未来选择低碳出行
VI3我认为低碳出行奖励对于鼓励低碳出行是有必要的
新生态范式(NEP)NEP1使用新能源汽车出行可以节能减排文献[14]
NEP2车辆突然的加速或减速将增加能源消耗
NEP3全球变暖将增加极端天气出现的频率和强度
NEP4使用公共交通代替开车出行可以降低碳排放
出行意向(BI)BI1在日常出行中我有强烈的低碳出行意向文献[6]
BI2未来的日常出行中我愿意经常使用低碳出行
BI3未来的日常出行中我愿意推荐他人选择低碳出行
表 1  潜变量量表
图 2  社会经济属性分布
潜变量观测变量因子载荷Cronbach’s AlphaCRAVE
ATAT10.8370.8720.8720.695
AT20.846
AT30.818
SNSN10.7940.8810.8590.671
SN20.776
SN30.883
PBCPBC10.8690.8100.8130.686
PBC20.785
ARAR10.8760.8810.8830.715
AR20.802
AR30.857
ACAC10.8920.9260.9350.782
AC20.826
AC30.908
AC40.909
VIVI10.8380.8660.8700.691
VI20.856
VI30.799
NEPNEP10.8560.9050.9140.723
NEP20.813
NEP30.841
NEP40.900
BIBI10.7500.8110.8160.596
BI20.739
BI30.825
表 2  样本信度、聚合效度检验结果
图 3  样本收敛效度检验结果
出行方式Chi/DFRMSEATLICFI
小汽车1.4980.0530.9240.935
公共交通1.7270.0470.9580.964
非机动交通1.2070.0480.9060.919
表 3  MIMIC拟合度指标
图 4  小汽车MIMIC模型的结果
图 5  公共交通MIMIC模型的结果
图 6  非机动交通MIMIC模型的结果
变量无潜变量方式选择模型混合选择模型
公共交通非机动交通公共交通非机动交通
常数项6.079***5.552***7.801***4.004*
30岁以下1.920**
45-60岁?2.142**?2.866***
拥有驾照?2.351***?1.570*?2.359***?1.640*
初中及以下1.289***3.501***1.520***3.681***
高中0.934**2.519***1.456***2.881***
家庭汽车数?1.581***?1.455**?1.656***?1.357**
家庭非机动车数0.434**0.509***0.564*
<9999元?2.619***?1.421**?2.703***?1.383*
10000~
19999元
?2.056***?1.232**?2.136***?1.201**
家庭人数3人?0.603*?0.690*
成年人家庭?2.112***?1.468**
出行时间?0.033***?0.122***?0.029***?0.121***
新生态范式?0.542***?0.539**
后果意识?0.493***
态度0.819***
责任意识?0.758**
出行意向0.546***1.005**
Cox–Snell’s R20.4800.520
McFadden’s R20.5600.607
Nagelkerke’s R20.3360.377
命中率69.8%74.4%
表 4  方式选择模型的参数估计结果
图 7  碳激励下的出行方式转变
变量系数OR
<9999元?2.852**0.058
10000~19999元?2.913***0.054
出行时间?0.240***0.786
知觉感知控制0.759**2.136
主观准则?1.751***0.174
激励态度0.990*2.691
出行意向0.942*2.565
有孩子家庭×态度0.461***1.586
出行时间×责任意识0.036*1.037
Cox–Snell’s R20.508
Nagelkerke’s R20.698
命中率88.1%
表 5  二元混合选择模型的估计结果
1 STRATHMAN J G, DUEKER K J, DAVIS J S Effects of household structure and selected travel characteristics on trip chaining[J]. Transportation, 1994, 21 (1): 23- 45
doi: 10.1007/BF01119633
2 GE Y B, BIEHL A, RAVULAPARTHY S, et al Joint modeling of access mode and parking choice of air travelers using revealed preference data[J]. Transportation Research Record, 2021, 2675 (11): 699- 713
doi: 10.1177/03611981211019037
3 KIM E J, KIM Y, JANG S, et al Tourists’ preference on the combination of travel modes under mobility-as-a-service environment[J]. Transportation Research Part A: Policy and Practice, 2021, 150 (8): 236- 255
4 WAYGOOD E O D, SUN Y L, SCHMOCKER J D Transport sufficiency: introduction and case study[J]. Travel Behaviour and Society, 2019, 15 (2): 54- 62
5 JIA N, LI L Y, LING S, et al Influence of attitudinal and low-carbon factors on behavioral intention of commuting mode choice: a cross-city study in China[J]. Transportation Research Part A: Policy and Practice, 2018, 111 (5): 108- 118
6 LIU D Y, DU H B, SOUTHWORTH F, et al The influence of social-psychological factors on the intention to choose low-carbon travel modes in Tianjin, China[J]. Transportation Research Part A: Policy and Practice, 2017, 105 (11): 42- 53
7 BEN-AKIVA M, MCFADDEN D, TRAIN K, et al Hybrid choice models: progress and challenges[J]. Marketing Letters, 2002, 13 (3): 163- 175
doi: 10.1023/A:1020254301302
8 鞠鹏, 周晶, 徐红利, 等 基于混合选择模型的汽车共享选择行为研究[J]. 交通运输系统工程与信息, 2017, 17 (2): 7- 13
JU Peng, ZHOU Jing, XU Hongli, et al Travelers’ choice behavior of car sharing based on hybrid choice model[J]. Journal of Transportation System Engineering and Information Technology, 2017, 17 (2): 7- 13
9 景鹏, 隽志才, 查奇芬 考虑心理潜变量的出行方式选择行为模型[J]. 中国公路学报, 2014, 27 (11): 84- 92
JING Peng, JUAN Zhicai, ZHA Qifen Incorporating psychological latent variables into travel mode choice model[J]. China Journal of Highway and Transport, 2014, 27 (11): 84- 92
10 徐标, 路庆昌, 徐鹏程, 等 考虑群体差异的低碳出行意向与行为一致性研究[J]. 浙江大学学报: 理学版, 2023, 50 (3): 378- 390
XU Biao, LU Qingchang, XU Pengcheng, et al A study on group difference between low-carbon transportation intention and consistent behavior[J]. Journal of Zhejiang University: Science Edition, 2023, 50 (3): 378- 390
11 ZAILANI S, IRANMANESH M, MASRON T A, et al Is the intention to use public transport for different travel purposes determined by different factors?[J]. Transportation Research Part D: Transport and Environment, 2016, 49 (8): 18- 24
12 WANG H, GUI H, REN C, et al Factors influencing urban residents’ intention of garbage sorting in china: an extended tpb by integrating expectancy theory and norm activation model[J]. Sustainability, 2021, 13 (23): 12985
doi: 10.3390/su132312985
13 马壮林, 崔姗姗, 胡大伟 限行政策下城市居民低碳出行意向[J]. 吉林大学学报: 工学版, 2022, 52 (11): 2607- 2617
MA Zhuanglin, CUI Shanshan, HU Dawei Urban residents’ low-carbon travel intention after implementation of driving restriction policy[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52 (11): 2607- 2617
14 HUANG Y, GAO L Influence mechanism of commuter’s low-carbon literacy on the intention of mode choice: a case study in Shanghai, China[J]. International Journal of Sustainable Transportation, 2022, 16 (12): 1131- 1143
doi: 10.1080/15568318.2021.1975325
15 JI Z, GONG Y, TONG Z, et al Factors influencing public support for the individual low-carbon behavior rewarding system: evidence from a large-scale longitudinal survey in China[J]. Journal of Cleaner Production, 2023, 409: 137187
doi: 10.1016/j.jclepro.2023.137187
16 JENN A, SPRINGEL K, GOPAL A R Effectiveness of electric vehicle incentives in the United States[J]. Energy Policy, 2018, 119 (8): 349- 356
17 ZHANG S, HU D, LIN T, et al Determinants affecting residents’ waste classification intention and behavior: a study based on TPB and ABC methodology[J]. Journal of Environmental Management, 2021, 290 (14): 112591
18 AJZEN I The theory of planned behavior[J]. Organizational Behavior and Human Decision Processes, 1991, 50 (2): 179- 211
doi: 10.1016/0749-5978(91)90020-T
19 STERN P C New environmental theories: toward a coherent theory of environmentally significant behavior[J]. Journal of Social Issues, 2000, 56 (3): 407- 424
doi: 10.1111/0022-4537.00175
20 TAO Y J, DUAN M S, DENG Z Using an extended theory of planned behaviour to explain willingness towards voluntary carbon offsetting among Chinese consumers[J]. Ecological Economics, 2021, 185 (7): 107068
21 BAMBERG S, MÖSER G Twenty years after Hines, Hungerford, and Tomera: a new meta-analysis of psycho-social determinants of pro-environmental behaviour[J]. Journal of Environmental Psychology, 2007, 27 (1): 14- 25
doi: 10.1016/j.jenvp.2006.12.002
22 STEG L, DREIJERINK L, ABRAHAMSE W Factors influencing the acceptability of energy policies: a test of VBN theory[J]. Journal of Environmental Psychology, 2005, 25 (4): 415- 425
doi: 10.1016/j.jenvp.2005.08.003
23 KIATKAWSIN K, HAN H Young travelers' intention to behave pro-environmentally: merging the value-belief-norm theory and the expectancy theory[J]. Tourism Management, 2017, 59 (2): 76- 88
24 SKINNER C J. Probability proportional to size (PPS) sampling [EB/OL]. (2014-11-27)[2022-10-24]. https://doi.org/10.1002/9781118445112.stat03346.
25 杭州市统计局. 2021年杭州市统计年鉴[EB/OL]. (2021-11-15)[2022-10-24]. http://tjj.hangzhou.gov.cn/art/2021/11/15/art_1229453592_3968147.html.
[1] 刘鹏,路庆昌,秦汉,崔欣. 道路网络多阶段抗灾能力优化模型构建与应用[J]. 浙江大学学报(工学版), 2024, 58(1): 96-108.
[2] 卢凯,尹帅帅,江书妍,周志洁,李青. 考虑交织路段掉头车流的邻近交叉口信号协调控制[J]. 浙江大学学报(工学版), 2023, 57(8): 1618-1628.
[3] 潘义勇,管星宇. 基于分位数回归的随机优化速度跟驰模型[J]. 浙江大学学报(工学版), 2022, 56(8): 1553-1559.
[4] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[5] 余佳洁,季彦婕,卜卿,郑岳标. 考虑断点成本的长干线分段绿波控制方法[J]. 浙江大学学报(工学版), 2022, 56(4): 640-648.
[6] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[7] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[8] 卢凯,田鑫,林观荣,邓兴栋. 交叉口信号相位设置与配时同步优化模型[J]. 浙江大学学报(工学版), 2020, 54(5): 921-930.
[9] 曾佳棋,王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394.
[10] 张思佳,贾顺平,毛保华,麻存瑞,张桐. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 292-298.
[11] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460.
[12] 商强, 林赐云, 杨兆升, 邴其春, 邢茹茹. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版), 2017, 51(7): 1339-1346.
[13] 刘美岐, 沈莉潇, 金盛. 考虑右转信号控制的共用车道通行能力模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1347-1354.
[14] 徐程, 曲昭伟, 王殿海, 金盛. 混合自行车交通流速度分布模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1331-1338.
[15] 王韩麒, 陈红, 冯微, 刘玮蔚. 基于CPT的异质通勤者多维出行决策模型[J]. 浙江大学学报(工学版), 2017, 51(2): 297-303.