Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1467-1478    DOI: 10.3785/j.issn.1008-973X.2024.07.016
交通工程、土木工程     
联排凹曲面屋盖的风荷载特性试验研究
郝树仁1(),李天娥1,*(),彭辉2,武海全2,闫月勤2,李海旺1,苏宁3
1. 太原理工大学 土木工程学院,山西 太原 030024
2. 山西五建集团有限公司,山西 太原 030013
3. 东北电力大学 建筑工程学院,吉林 吉林 132012
Experimental study on wind load characteristics of continuous roof with concave surface
Shuren HAO1(),Tian’e LI1,*(),Hui PENG2,Haiquan WU2,Yueqin YAN2,Haiwang LI1,Ning SU3
1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Shanxi Fifth Construction Group Limited Company, Taiyuan 030013, China
3. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
 全文: PDF(2498 KB)   HTML
摘要:

为了探究凹曲面屋盖的风荷载特性并为实际工程提供抗风设计参考,对3种联排凹曲面屋盖进行刚性模型风洞测压试验,系统分析联排数及风向角对凹曲面屋盖升力系数、平均风压系数和极值风压系数的影响. 结果表明:屋盖整体升力系数随着联排数的增加不断降低,各屋盖的升力系数受风向角影响较大. 在不同联排数及风向角下,屋盖整体承受向上的风吸力,屋盖的平均风压系数表现出复杂的波动性;在迎风屋盖边缘处的气流分离现象明显,导致该处存在较大风吸力;越远离迎风侧的屋盖,平均风压系数的波动越小,稳定于?0.1. 联排数对极值风压系数的影响不可忽略,尤其是极小值负压系数,边缘屋盖分区极小值负压系数的最小值为?5.1,中间屋盖分区极小值负压系数的最小值为?3.3. 基于试验结果,总结给出不同联排凹曲面屋盖分区的平均风压系数和极值风压系数.

关键词: 凹曲面屋盖风洞试验风荷载干扰效应风压分区    
Abstract:

Wind tunnel pressure measurement tests on rigid models of three types of concave surface roofs with different continuous roof numbers were conducted to study the wind load characteristics and provide wind resistance design references for practical engineering. The influences of continuous roof numbers and wind direction angle on the lift coefficient, mean wind pressure coefficient, and peak wind pressure coefficient were systematically analyzed. The results show that the overall lift coefficient decreases with the increase of continuous roof numbers, and the lift coefficient of each roof is greatly affected by the wind direction angle. Under the conditions of different continuous roof numbers and wind direction angles, the whole roof withstands upward wind suction and the mean wind pressure coefficient exhibits complex fluctuations. A significant airflow separation phenomenon appears at the edge of the windward roof, corresponding to high wind suction. The further away from the windward roof, the more stable the distribution of the mean wind pressure coefficient, which was stable at about ?0.1. The continuous roof numbers exhibit a significant influence on the peak pressure coefficient, especially on the negative peak wind pressure coefficient. The minimum value of the negative peak wind pressure coefficient was ?5.1 for the edge roof and ?3.3 for the middle roof. Based on the test results, the mean and peak wind pressure coefficients for different zoning continuous roofs with concave surfaces were given out.

Key words: concave surface roof    wind tunnel test    wind load    interference effect    wind pressure zoning
收稿日期: 2023-06-29 出版日期: 2024-07-01
CLC:  TP 393.3  
基金资助: 国家自然科学基金资助项目(52202415);山西省基础研究计划资助项目(202203021221044);山西五建集团有限公司科研项目(RH2100002871).
通讯作者: 李天娥     E-mail: pangshijin2021@163.com;woshitiane@126.com
作者简介: 郝树仁(1999—),男,硕士生,从事结构风工程研究. orcid.org/0009-0001-8316-1058. E-mail:pangshijin2021@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郝树仁
李天娥
彭辉
武海全
闫月勤
李海旺
苏宁

引用本文:

郝树仁,李天娥,彭辉,武海全,闫月勤,李海旺,苏宁. 联排凹曲面屋盖的风荷载特性试验研究[J]. 浙江大学学报(工学版), 2024, 58(7): 1467-1478.

Shuren HAO,Tian’e LI,Hui PENG,Haiquan WU,Yueqin YAN,Haiwang LI,Ning SU. Experimental study on wind load characteristics of continuous roof with concave surface. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1467-1478.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.016        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1467

工况屋盖形式联排数测点数
R1A单跨122
R2B-C双跨210
R3B-C-A三跨332
表 1  风洞试验工况及测点
图 1  三跨屋盖测点布置及风向角
图 2  风洞试验安装示意图
图 3  风洞试验的参数设置
项目尺度/m风速/(m·s?1)时间/min
模型尺度110.01.0
原型尺度25029.883.9
表 2  风洞试验缩尺比
图 4  屋盖整体及边缘屋盖的升力系数
图 5  不同屋盖形式的升力系数
图 6  平均风压系数分布
屋盖形式Cp
θ=0°θ=30°θ=60°θ=90°
A(迎风屋盖)?0.36?0.38?0.41?0.52
C(中间屋盖)?0.48?0.34?0.09?0.07
B(背风屋盖)?0.45?0.36?0.20?0.07
表 3  不同风向角下屋盖的整体平均风压系数(R3工况)
图 7  平均风压的屋盖分区
图 8  平均风压系数的分区值
分区Cp,R1工况Cp,R2工况Cp,R3工况
θ=0°θ=30°θ=60°θ=90°θ=0°θ=30°θ=60°θ=90°θ=0°θ=30°θ=60°θ=90°
B1?0.88?0.54?0.06?0.04?0.91?0.61?0.050.02
B2?1.02?0.67?0.06?0.08?1.05?0.73?0.070.01
B3?1.05?0.74?0.27?0.16?1.08?0.77?0.25?0.09
B4?1.01?0.90?0.63?0.23?1.04?1.48?0.59?0.17
B5?0.22?0.18?0.05?0.12?0.19?0.08?0.05?0.03
B6?0.23?0.11?0.04?0.16?0.21?0.09?0.08?0.03
B7?0.25?0.22?0.24?0.25?0.24?0.03?0.28?0.12
B8?0.27?0.39?0.39?0.31?0.27?0.44?0.39?0.22
B9?0.09?0.05?0.010.07?0.07?0.02?0.060.07
B10?0.10?0.08?0.010.05?0.07?0.10?0.100.06
B11?0.11?0.21?0.13?0.09?0.09?0.14?0.22?0.09
B12?0.14?0.28?0.25?0.26?0.11?0.35?0.27?0.23
C1?1.00?0.62?0.04?0.38?1.05?0.54?0.050.03
C2?1.08?0.70?0.09?0.54?1.14?0.70?0.07?0.02
C3?1.07?0.73?0.44?0.55?1.14?0.77?0.27?0.10
C4?0.93?1.45?1.13?0.47?0.94?0.90?0.45?0.20
C5?0.24?0.06?0.19?0.60?0.26?0.180.08?0.01
C6?0.200.07?0.34?0.78?0.25?0.140.07?0.07
C7?0.17?0.06?0.65?0.80?0.26?0.24?0.10?0.16
C8?0.18?0.47?0.76?0.68?0.28?0.37?0.28?0.25
C9?0.120.03?0.34?0.23?0.11?0.050.100.11
C10?0.10?0.01?0.41?0.54?0.10?0.070.090.07
C11?0.09?0.27?0.42?0.69?0.10?0.17?0.02?0.05
C12?0.11?0.35?0.38?0.61?0.11?0.22?0.17?0.20
A1?0.69?0.45?0.02?0.26?1.01?0.65?0.04?0.23
A2?0.87?0.59?0.09?0.46?1.09?0.74?0.07?0.40
A3?0.87?0.64?0.40?0.49?1.07?0.80?0.33?0.45
A4?0.50?1.38?1.22?0.67?0.61?0.76?1.42?0.71
A5?0.13?0.10?0.19?0.51?0.22?0.11?0.04?0.41
A6?0.110.09?0.29?0.71?0.18?0.10?0.13?0.60
A7?0.11?0.12?0.57?0.72?0.13?0.19?0.47?0.62
A8?0.06?0.57?0.89?0.86?0.08?0.34?0.91?0.86
A9?0.060.02?0.28?0.20?0.08?0.04?0.26?0.17
A10?0.050.05?0.33?0.46?0.06?0.05?0.34?0.41
A11?0.06?0.18?0.35?0.58?0.05?0.12?0.35?0.53
A12?0.07?0.31?0.49?0.86?0.06?0.22?0.51?0.88
表 4  屋盖分区的平均风压系数参考值
图 9  极值风压系数分布
图 10  极值风压的屋盖分区
图 11  极值风压系数的分区值
分区R1工况R2工况R3工况
CpmaxCpminCpmaxCpminCpmaxCpmin
B10.7?5.20.7?5.1
B20.5?3.80.7?3.8
B30.6?2.50.6?2.5
B60.9?2.50.6?2.1
B70.7?2.31.0?2.5
C10.7?3.20.4?3.3
C20.5?2.90.4?2.9
C30.7?2.60.5?2.5
C60.7?2.20.5?1.0
C70.7?2.30.5?1.0
A11.0?4.80.7?3.6
A20.8?3.70.7?3.1
A30.6?2.30.8?2.6
A60.6?2.20.6?2.2
A70.6?2.20.7?2.5
表 5  屋盖分区的极值风压系数参考值
1 张洪才, 贾华勇, 牛晓宇 关于传统建筑屋面凹曲的探讨[J]. 古建园林技术, 2017, (4): 44- 47
ZHANG Hongcai, JIA Huayong, NIU Xiaoyu Discussion on the roof concave of the traditional architectures[J]. Traditional Chinese Architecture and Gardens, 2017, (4): 44- 47
2 QIU Y, SUN Y, WU Y, et al Modeling the mean wind loads on cylindrical roofs with consideration of the Reynolds number effect in uniform flow with low turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 129: 11- 21
doi: 10.1016/j.jweia.2014.02.011
3 LI Y Q, TAMURA Y, YOSHIDA A, et al Wind loading and its effects on single-layer reticulated cylindrical shells[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94 (12): 949- 973
doi: 10.1016/j.jweia.2006.04.004
4 SU N, PENG S, HONG N, et al Wind tunnel investigation on the wind load of large-span coal sheds with porous gables: influence of gable ventilation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104242
doi: 10.1016/j.jweia.2020.104242
5 吴迪, 武岳, 孙瑛 大跨度屋盖结构极值风压概率分布特征研究[J]. 建筑结构学报, 2015, 36 (3): 29- 35
WU Di, WU Yue, SUN Ying Probability distribution characteristics of extreme wind pressure for large span roofs[J]. Journal of Building Structures, 2015, 36 (3): 29- 35
6 高亮, 崔欣, 白桦, 等 某大跨度波浪形屋面体型系数取值研究[J]. 西安理工大学学报, 2016, 32 (3): 328- 332
GAO Liang, CUI Xin, BAI Hua, et al Analogical researchon shape coefficient of the abnormal roofing structure with the standard[J]. Journal of Xi’an University of Technology, 2016, 32 (3): 328- 332
7 桑冲 体育馆凹曲面屋盖风压特性及干扰效应的风洞试验研究[J]. 铁道勘测与设计, 2014, (1): 59- 66
SANG Chong Wind tunnel test research on wind load and interference effect on the concave surface roof of gymnasium[J]. Railway Survey and Design, 2014, (1): 59- 66
8 聂少锋, 孙玉金, 毛路, 等 弧形内凹大跨屋盖结构风荷载特性的风洞试验与数值模拟[J]. 西安建筑科技大学学报: 自然科学版, 2016, 48 (5): 669- 675
NIE Shaofeng, SUN Yujin, MAO Lu, et al Wind tunnel test and numerical simulation on wind load characteristics of large-span roof with concave surface[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2016, 48 (5): 669- 675
9 滕起, 张相勇, 孙建平, 等 弧形内凹连续坡屋面风压特性的数值模拟[J]. 空间结构, 2019, 25 (4): 43- 50
TENG Qi, ZHANG Xiangyong, SUN Jianping, et al Numerical simulation of wind pressure characteristics on a slope roof with consecutive concave surfaces[J]. Spatial Structures, 2019, 25 (4): 43- 50
10 马文勇, 刘庆宽, 尉耀元 具有凹面外形的大跨屋盖结构风荷载分布及风洞试验研究[J]. 振动与冲击, 2012, 31 (22): 34- 38
MA Wenyong, LIU Qingkuan, WEI Yaoyuan Wind load distribution and wind tunnel test for a curved concave long-span roof[J]. Journal of Vibration and Shock, 2012, 31 (22): 34- 38
doi: 10.3969/j.issn.1000-3835.2012.22.007
11 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012: 30–53.
12 American Society of Civil Engineers. Minimum design loads for buildings and other structures: ASCE/SEI 7-10 [S]. Reston: ASCE, 2010: 187–201.
13 中华人民共和国住房和城乡建设部. 索结构技术规程: JGJ 257—2012 [S]. 北京: 中国建筑工业出版社, 2012: 46–47.
14 王秀丽, 刘永周 矢跨比和垂跨比对张弦立体桁架性能的影响分析[J]. 空间结构, 2005, 35 (1): 35- 39
WANG Xiuli, LIU Yongzhou Influences of rise-to-span ratio and sag-to-span ratio on the prestressed spatial truss string structure[J]. Spatial Structures, 2005, 35 (1): 35- 39
doi: 10.3969/j.issn.1006-6578.2005.01.007
15 LAROSE G L, D’AUTEUIL A Experiments on 2D rectangular prisms at high Reynolds numbers in a pressurised wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (6/7): 923- 933
16 孙瑛, 武岳, 林志兴, 等 大跨度平屋盖表面的特征湍流研究[J]. 空气动力学学报, 2007, 25 (3): 319- 324
SUN Ying, WU Yue, LIN Zhixing, et al Characteristics of signature turbulence on long span flat roofs[J]. Acta Aerodynamica Sinica, 2007, 25 (3): 319- 324
doi: 10.3969/j.issn.0258-1825.2007.03.007
17 中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T 338—2014 [S]. 北京: 中国建筑工业出版社, 2014: 5–9.
18 KAY N J, OO N L, GILL M S, et al Robustness of the digital filter to differing calibration flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104061
doi: 10.1016/j.jweia.2019.104061
19 陈波, 程行, 张丽娜, 等 不同排列方式平屋面建筑群极值风荷载干扰效应影响研究[J]. 建筑结构学报, 2018, 39 (10): 1- 10
CHEN Bo, CHENG Hang, ZHANG Lina, et al Investigation on interference effects on peak wind loads on a group of buildings with flat roof under different arrangements[J]. Journal of Building Structures, 2018, 39 (10): 1- 10
20 冯帅, 谢壮宁 基于动力学模态分解的大跨度平屋盖风压场研究[J]. 工程力学, 2022, 39 (7): 109- 119
FENG Shuai, XIE Zhuangning Research on wind pressure field of large-span flat roof based on dynamic mode decomposition[J]. Engineering Mechanics, 2022, 39 (7): 109- 119
doi: 10.6052/j.issn.1000-4750.2021.04.0247
21 陈伏彬, 唐宾芳, 蔡虬瑞, 等 大跨平屋盖风荷载特性及风压预测研究[J]. 振动与冲击, 2021, 40 (3): 226- 232
CHEN Fubin, TANG Binfang, CAI Qiurui, et al Wind load characteristics and wind pressure prediction of long-span flat roof[J]. Journal of Vibration and Shock, 2021, 40 (3): 226- 232
22 杜坤. 非均匀地形下平屋盖风荷载干扰效应的影响研究[D]. 北京: 北京交通大学, 2016.
DU Kun. The influence of heterogeneous terrain wind loads interference effects on flat roof [D]. Beijing: Beijing Jiaotong University, 2016.
23 林强, 刘敏, 杨庆山, 等 非高斯风压峰值因子估计: 基于矩的转换过程法的对比研究[J]. 工程力学, 2020, 37 (4): 78- 86
LIN Qiang, LIU Min, YANG Qingshan, et al A comparative study on moment-based translation process methods for the peak factor estimation of non-gaussian wind pressures[J]. Engineering Mechanics, 2020, 37 (4): 78- 86
24 韩啟金, 刘敏, 杨庆山, 等 基于混合风压分区方法的鞍型屋盖风压分区研究[J]. 建筑结构, 2023, 53 (12): 103- 109
HAN Qijin, LIU Min, YANG Qingshan, et al Study on wind pressure zoning of saddle roof based on mixed wind pressure zoning method[J]. Building Structure, 2023, 53 (12): 103- 109
[1] 沈国辉,李保珩,郭勇,赵峥,潘峰. 输电塔扭转响应和扭转等效风荷载的计算方法[J]. 浙江大学学报(工学版), 2022, 56(3): 579-589.
[2] 黄铭枫,魏歆蕊,叶何凯,叶建云,楼文娟. 大跨越钢管塔双平臂抱杆的风致响应[J]. 浙江大学学报(工学版), 2021, 55(7): 1351-1360.
[3] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[4] 汪之松,邓骏,方智远,陈圆圆. 下击暴流作用下低矮建筑风荷载大涡模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 512-520.
[5] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[6] 黄铭枫,叶何凯,楼文娟,孙轩涛,叶建云. 考虑风速风向分布的干煤棚结构风振疲劳分析[J]. 浙江大学学报(工学版), 2019, 53(10): 1916-1926.
[7] 楼文娟, 梁洪超, 卞荣. 基于杆件荷载的角钢输电塔风荷载体型系数计算[J]. 浙江大学学报(工学版), 2018, 52(9): 1631-1637.
[8] 刘勃锴, 高宏力, 吴颖川, 张小庆, 李世超. 脉冲燃烧风洞新型悬挂式测力系统[J]. 浙江大学学报(工学版), 2018, 52(4): 619-627.
[9] 张扬, 沈国辉, 余世策, 马郁葱, 张瑞. 输电线风噪声的声学风洞试验[J]. 浙江大学学报(工学版), 2017, 51(8): 1494-1499.
[10] 谢恩献, 袁行飞, 陈冲. 台风作用下弦支网壳结构动力失效[J]. 浙江大学学报(工学版), 2017, 51(2): 238-244.
[11] 徐海巍, 楼文娟, 李天昊, 梁洪超, 章李刚, 卢明. 微地形下输电线路跳线的风偏分析[J]. 浙江大学学报(工学版), 2017, 51(2): 264-272.
[12] 桂龙辉, 谢霁明, 林颖孜, 张鸿玮. 悬挑环形廊桥的气动弹性模型试验[J]. 浙江大学学报(工学版), 2017, 51(11): 2121-2129.
[13] 沈国辉, 姚旦, 余世策, 楼文娟,邢月龙, 潘峰. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5): 805-812.
[14] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[15] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.