Please wait a minute...
浙江大学学报(工学版)
土木工程     
大型低矮圆柱壳结构风荷载特性的风洞试验
赵阳1,2,林寅1,余世策1
1. 浙江大学 建筑工程学院,浙江 杭州 310058;2. 浙江省空间结构重点实验室,浙江 杭州 310058
Wind-tunnel test of wind loads on large cylindrical structures with very low aspect ratio
ZHAO Yang1,2,LIN Yin1,YU Shi-ce1
1. College of Civil Engineering and Architecture, Hangzhou 310058, China;
2. Zhejiang Provincial Key Laboratory of Space Structures, Hangzhou 310058, China
 全文: PDF(1342 KB)   HTML
摘要:

以实际工程中的10方立式钢储罐为研究对象,采用刚性缩尺模型风洞试验方法,获得大型低矮圆柱结构内外表面的风压分布规律.结果表明:大型低矮圆柱壳结构外表面的风荷载与规范采用的数据有较大差异,内表面风压呈现出明显的波动.对平均风压和脉动风压的相关性分析表明,准定常理论仅对外表面的背风区适用.对各测点风压时程数据进行三阶和四阶矩统计量分析,研究低矮圆柱壳表面风压的非高斯特性.结果显示:绝大多数测点的概率密度偏离高斯概型.为了便于设计应用,给出非高斯峰值因子的参考数值.与以往试验结果的比较表明:不同高径比的圆柱壳风荷载有所不同,负压区的体型系数绝对值随着高径比的增大而增大.

Abstract:

Taking typical steel tanks in practice with volume of 100 000 m3 as research object, wind tunnel test on rigid scale models was carried out to obtain wind pressure distributions on both internal and external walls for large cylindrical structures with very low aspect ratio. It is shown that, wind pressures outside cylindrical wall exist obvious difference with those provided in related specifications, and wind pressures inside cylindrical wall fluctuate markedly. Results from correlation analysis of mean and fluctuating pressures indicate that, quasi-steady theory is only applicable to the windward region of external wall. The third and fourth moments of wind pressure time history data were calculated to investigate the non-Gaussian feature of wind pressures on large cylindrical structures. It is shown that the probability distribution of fluctuating wind pressure for most taps deviates from Gaussian distribution. The peak factors for estimating the maximum positive and negative wind pressures are given for ease of application in design. Comparison with earlier test results indicates that, wind loads on cylindrical structures vary with the aspect ratio, and the maximum negative mean pressure coefficient increases with the increase of the aspect ratio. 

出版日期: 2014-11-26
:  TU 312  
基金资助:

国家自然科学基金资助项目(51378459);浙江省重点科技创新团队资助项目(2010R50034).

作者简介: 赵阳(1970-),男,教授,从事薄壳结构与空间结构、结构风工程. E-mail:ceyzhao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.05.0010.

ZHAO Yang,LIN Yin,YU Shi-ce. Wind-tunnel test of wind loads on large cylindrical structures with very low aspect ratio. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.05.0010.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.05.0010        http://www.zjujournals.com/eng/CN/Y2014/V48/I5/820

[1] 李娟,王金玉,刘振华.钢制拱顶油罐结构风振响应数值模拟[J].山东大学学报:工学版,2008,38(S2):119127.
LI Juan, WANG Jin-yu, LIU Zhen-hua. Numerical simulation of wind-induced response on Steel the vaults tank structure [J]. Journal of Shandong University :Engineering Science, 2008, 38(S2): 119127.
[2] SOSA E M. Computational buckling analysis of cylindrical thin-walled aboveground tanks [D]. \[S.l.\]:University of Puerto Rico, Mayagüez Campus, 2005:45.
[3] GODOY L A. JACA R C. Wind buckling of metal tanks during their construction [J]. Thin-Walled Structures, 2010, 48(6): 453459.
[4] MAHER F J. Wind loads on dome-cylinders and dome-cone shapes [J]. Journal of the Structural Division, ASCE, 1966, 91(3): 7996.
[5] PURDY D M, MAHER P E, FREDERICK D. Model studies of wind loads on flat-top cylinders [J]. Journal of the Structural Division, ASCE, 1967, 93: 379395.
[6] MACDONALD P A, KWOK K C S, HOLMES J D. Wind loads on circular storage bins, silos and tanks: I. Point pressure measurements on isolated structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988; 31(2/3): 165187.
[7] PORTELA G. Wind pressure and buckling of metal cantilever tanks [D]. \[S.l.\]:University of Puerto Rico, Mayagüez Campus, 2004:146183.
[8] 植松康,具忠謨. 円筒状構造物の風荷重に関する風洞実験 [J]. 日本風工学会論文集,2008,33(1): 1725.
UEMATSU Y, KOO C M. Wind-tunnel study of wind loads on circular cylindrical structures [J]. Journal of Wind Engineering, JAWE, 2008,33(1): 1725.
[9] 中国科学院力学研究所板壳组. 浮顶油罐的强度和稳定性的计算公式[J]. 力学与实践,1982,3(2):3640.
Plate and shell research group of Institute of Mechanics, Chinese Academy of Sciences. Strength and stability of tanks with floating roof [J]. Mechanics in Engineering, 1982,3(2): 3640.
[10] Standard of Japan. Recommendations for loads on buildings [S]. Tokyo: Architectural Institute of Japan, 2006.
[11] 操金鑫,赵林,葛耀君,等. 双曲线圆截面建筑结构雷诺数效应模拟实践[J]. 实验流体力学,2009,23(4): 4655.
CAO Jin-xin, ZHAO Lin, GE Yao-jun, et al. Practices on simulation of Reynolds number effects for the hyperbolic circular section structures[J]. Journal of Experiments in Fluid Mechanics, 2009,23(4):4655.
[12] 李会知,樊友景,吴义章,等. 不同粗糙表面的圆柱风压分布试验研究[J]. 工程力学,2002,19(2):129132.
LI Hui-zhi, FAN You-jing, WU Yi-zhang, et al. Wind tunnel test of pressure distribution on cylinders with various surface roughness [J].Engineering Mechanics, 2002,19(2):129132.
[13] CHEUNG J C K.ELBOURNE W H. Turbulence effects on some aerodynamic parameters of a circular cylinder at supercritical Reynolds numbers [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983,14(1/3):399410.
[14] GB50009-2012. 建筑结构荷载规范 [S]. 北京:中国建筑工业出版社,2012.
GB50009-2012. Load code for the design of building structures [S]. Beijing: China Architecture and Building Press, 2012.
[15] 鲍侃袁. 大型双曲冷却塔的风荷载和风致响应理论分析与试验研究[D]. 杭州:浙江大学,2009.
BAO Kan-yuen. Theoretical and experimental research on wind load and wind induced response of large hyperbolic cooling towers [D]. Hangzhou: Zhejiang University, 2009.
[16] 鲍侃袁,沈国辉,孙炳楠. 大型双曲冷却塔平均风荷载的数值模拟研究[J]. 空气动力学学报,2009, 27(6):650655.
BAO Kan-yuan, SHEN Guo-hui, SUN Bing-nan. Numerical simulation of mean wind load on large hyperbolic cooling tower [J]. ACAC Aerodynamic sinica, 2009, 27(6):650655.
[17] 何选森. 随机过程[M].北京:人民邮电出版社,2009:2021.
[18] 陆志良. 空气动力学[M]. 北京:北京航天航空大学出版社,2009.
[19] 孙瑛,武岳,林志兴,等. 大跨屋盖结构风压脉动的非高斯特性[J]. 土木工程学报,2007,40(4):15
SUN Ying, WU Yue, LIN Zhi-xing, et al. Non-Gaussian features of fluctuating wind pressures on long span roofs [J]. China Civil Engineering Journal, 2007,40(4):15.
[20] 林巍,楼文娟,申屠团兵,等. 高层建筑脉动风压的非高斯峰值因子方法[J]. 浙江大学学报:工学版,2012,46(4):691697.
LIN Wei, LOU Wen-juan, SHENTU Tuan-bin. Peak factor of non-Gaussian pressure process on complex super-tall building [J]. Journal of Zhejiang University :Engineering, 2012, 46(4): 691697.

[1] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[2] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[3] 王磊, 梁枢果,王泽康,张正维. 超高层建筑横风向风振局部气动外形优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1239-1246.
[4] 沈国辉, 姚旦, 余世策, 楼文娟,邢月龙, 潘峰. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5): 805-812.
[5] 梁笑天,袁行飞. 索支撑压杆屈曲性能分析[J]. 浙江大学学报(工学版), 2015, 49(3): 505-510.
[6] 肖南,杨逢春. 不同温度和位移边界下混凝土楼板配筋建议[J]. 浙江大学学报(工学版), 2014, 48(11): 1925-1932.
[7] 楼文娟,王嘉伟,杨伦,陈勇. 雷暴风三维脉动风速场数值模拟[J]. 浙江大学学报(工学版), 2014, 48(7): 1162-1169.
[8] 王磊,梁枢果,邹良浩,汤怀强,王述良.  超高层建筑涡振过程中体系振动频率[J]. 浙江大学学报(工学版), 2014, 48(5): 805-812.
[9] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[10] 沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.
[11] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.
[12] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[13] 杨伦,黄铭枫,楼文娟. 高层建筑周边三维瞬态风场的混合数值模拟[J]. J4, 2013, 47(5): 824-830.
[14] 卢旦,李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. J4, 2013, 47(3): 508-514.
[15] 宁鹏飞,唐德高. 起爆位置偏差对结构内爆炸荷载的影响分析[J]. J4, 2012, 46(12): 2252-2258.