Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (4): 857-866    DOI: 10.3785/j.issn.1008-973X.2024.04.021
航空航天技术     
倾转旋翼/机翼连续过渡状态气动性能仿真分析
王孟恬(),金台*(),刘尧龙
1. 浙江大学 航空航天学院,浙江 杭州 310027
Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode
Mengtian WANG(),Tai JIN*(),Yaolong LIU
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(4505 KB)   HTML
摘要:

基于重叠网格,构建适用于连续倾转过渡状态模拟的数值计算框架. 针对无人机中的2个重要部件——旋翼和机翼,模拟旋翼/机翼系统从固定翼模式倾转至直升机模式的过渡状态. 采用雷诺平均方程,比较不同前进比下的气动性能变化,分析侧风风速对过渡状态的气动性能影响. 结果表明,机翼升阻力系数随着倾转角的增大而减小,变化程度随着前进比的增大而减小;旋翼拉力随着倾转角的增大而增大,变化程度随着前进比的增大而增大. 当来流存在侧风情况时,机翼升阻力系数减小,在倾转角到65°后侧风风速较小时的机翼性能有一定提升. 旋翼的拉力系数大小受侧风影响不大,但振荡幅度会因此增大.

关键词: 倾转旋翼机过渡状态气动特性重叠网格数值仿真    
Abstract:

A numerical simulation framework was established, which was suitable for simulations of the continuous conversion mode of the tiltrotor based on the overset mesh method. The transition of a rotor/wing system from fixed-wing mode to helicopter mode was simulated for two important components in unmanned aerial vehicles, the rotor and the wing. Reynolds-averaged Navier-Stokes equations were used to analyze the variations of aerodynamic characteristics in different advance ratios and the effects of crosswind velocity on aerodynamic characteristics in conversion mode. Results show that the lift and drag coefficients of the wing decrease with the increase of the tilt angle, and the variation decreases with the increase of the advance ratio. The rotor thrust increases with the increase of the tilt angle, and the variation increases with the increase of the advance ratio. When there is crosswind in the incoming flow, the lift and drag coefficients of the wing decrease. The performance of the wing in low crosswind velocity is improved after the tilt angle reaches 65°. The magnitude of the thrust coefficient of the rotor is not significantly affected by crosswind, but the oscillation amplitude increases as a result.

Key words: tiltrotor aircraft    conversion mode    aerodynamic characteristics    overset mesh    numerical simulation
收稿日期: 2023-05-22 出版日期: 2024-03-27
CLC:  V 211.52  
基金资助: 国家自然科学基金资助项目(52076194, 52236002).
通讯作者: 金台     E-mail: 12324020@zju.edu.cn;jintai@zju.edu.cn
作者简介: 王孟恬(1999—),女,博士生,从事倾转旋翼机气动仿真研究. orcid.org/0009-0009-2073-3969. E-mail:12324020@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王孟恬
金台
刘尧龙

引用本文:

王孟恬,金台,刘尧龙. 倾转旋翼/机翼连续过渡状态气动性能仿真分析[J]. 浙江大学学报(工学版), 2024, 58(4): 857-866.

Mengtian WANG,Tai JIN,Yaolong LIU. Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 857-866.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.021        https://www.zjujournals.com/eng/CN/Y2024/V58/I4/857

图 1  倾转旋翼/机翼的3种状态
图 2  数值模拟的计算域
图 3  计算域中沿机翼对称面的网格
图 4  不同网格的机翼升力-时间曲线
图 5  仿真结果与试验结果的升力系数-前进比曲线
算例n/(r·s?1)J算例n/(r·s?1)J
1147.570.200388.300.334
2116.330.254455.430.533
表 1  算例的参数取值
图 6  不同前进比的机翼升力系数-时间曲线
图 7  yoz截面流场压力云图和流线图(J = 0.2, α=90°)
图 8  不同前进比的机翼阻力系数-时间曲线
图 9  不同前进比的旋翼拉力-时间曲线
图 10  旋翼与机翼之间的流场压力云图(J=0.2, α=90°)
图 11  典型倾转角度和不同前进比下的流场Q涡量云图
图 12  典型倾转角度和不同前进比下的流场压力云图
图 13  典型倾转角度和不同前进比下的机翼压力系数
图 14  不同侧风速度的机翼升力系数-时间曲线
图 15  不同侧风速度的机翼阻力系数-时间曲线
图 16  典型倾转角度和不同来流速度方向下机翼上下表面的压力云图
图 17  机翼不同位置的压力系数
图 18  不同侧风速度的旋翼拉力系数-时间曲线
图 19  旋翼旋转平面的流场压力云图(α=90°)
图 20  不同侧风风速下的流场Q涡量云图(α=45°)
图 21  典型倾转角度和不同来流速度方向的流场压力云图
1 徐敏 倾转旋翼机的发展与关键技术综述[J]. 直升机技术, 2003, (2): 40- 44
XU Min A review on development and key technolo-gies of tiltrotor[J]. Helicopter Technique, 2003, (2): 40- 44
2 陈滔, 孟琳, 李楠, 等 飞机垂直/短距起降技术的研究[J]. 现代电子技术, 2014, 37 (23): 110- 114
CHEN Tao, MENG Lin, LI Nan, et al Study on V/STOL technology of aircraft[J]. Modern Electronics Technique, 2014, 37 (23): 110- 114
3 陈皓. 倾转旋翼机过渡模式下非定常气动力数值模拟[D]. 南京: 南京航空航天大学, 2018.
CHEN Hao. Numerical study on unsteady aerodynamic force of a tilt-rotor aircraft in conversion mode [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
4 招启军, 倪同兵, 李鹏, 等 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33 (12): 2900- 2912
ZHAO Qijun, NI Tongbin, LI Peng, et al Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33 (12): 2900- 2912
5 董凌华, 杨卫东, 张呈林 倾转旋翼/机翼耦合系统过渡状态气弹动力学试验研究[J]. 振动工程学报, 2008, 21 (5): 465- 470
DONG Linghua, YANG Weidong, ZHANG Chenglin Experiment on aeroelastic characteristics of tiltrotor aircraft in transition flight[J]. Journal of Vibration Engineering, 2008, 21 (5): 465- 470
6 CHINWICHARNAM K, ARIZA D G, MOSCHETTA J M, et al Aerodynamic characteristics of a low aspect ratio wing and propeller interaction for a tilt-body MAV[J]. International Journal of Micro Air Vehicle, 2013, 5 (4): 245- 260
doi: 10.1260/1756-8293.5.4.245
7 刘佳豪, 李高华, 王福新 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43 (12): 126097
LIU Jiahao, LI Gaohua, WANG Fuxin Rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astonautica Sinica, 2022, 43 (12): 126097
8 李鹏. 倾转旋翼机非定常气动特性分析及气动设计研究[D]. 南京: 南京航空航天大学, 2015.
LI Peng. Researches on aerodynamic design and analyses on unsteady aerodynamic characteristics of the tiltrotor aircraft [D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2015.
9 李鹏, 招启军, 汪正中, 等 过渡状态倾转旋翼气动力模拟的高效CFD方法[J]. 南京航空航天大学学报, 2015, 47 (2): 189- 197
LI Peng, ZHAO Qijun, WANG Zhengzhong, et al Highly-efficient CFD method for predicting aerodynamic force of tiltrotor in conversion mode[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47 (2): 189- 197
10 GARCIA A J, BARAKOS G N Numerical simulations on the ERICA tiltrotor[J]. Aerospace Science and Technology, 2017, 64: 171- 191
doi: 10.1016/j.ast.2017.01.023
11 杨海涛, 夏巍, 帅超, 等 倾转旋翼-机翼气动干扰准定常多重参考系仿真和风洞试验[J]. 科学技术与工程, 2021, 21 (32): 13958- 13964
YANG Haitao, XIA Wei, SHUAI Chao, et al Qusi-steady multiple reference frame simulation and wind tunnel test for the aerodynamic interference between tilt-rotors and wings[J]. Science Technology and Engineering, 2021, 21 (32): 13958- 13964
12 吴伟伟, 马存旺, 张练, 等 倾转旋翼机连续倾转过渡状态数值模拟[J]. 航空工程进展, 2021, 12 (3): 55- 64
WU Weiwei, MA Cunwang, ZHANG Lian, et al Numerical simulation of continuous tilting transition of tiltrotor aircraft[J]. Advances in Aeronautical Science and Engineering, 2021, 12 (3): 55- 64
13 刘聪, 魏志强, 韩红蓉, 等 侧风作用下无人机旋翼悬停状态气动响应分析[J]. 中国安全科学学报, 2021, 31 (9): 106- 112
LIU Cong, WEI Zhiqiang, HAN Hongrong, et al Aerodynamic response analysis of unmanned aerial vehicle rotor hovering under crosswind influence[J]. China Safety Science Journal, 2021, 31 (9): 106- 112
14 胡聪旭, 周建平, 刘新德, 等 前飞来流和侧风对植保无人机下洗流场影响的数值模拟研究[J]. 中国农机化学报, 2022, 43 (5): 61- 70
HU Congxun, ZHOU Jianpin, LIU Xinde, et al Numerical simulation of the effects incoming flow and crosswinds on airflow field of plant protection UAV[J]. Journal of Chinese Agricultural Mechanization, 2022, 43 (5): 61- 70
15 王建华. 基于重叠网格技术的船舶操纵运动直接数值模拟[D]. 上海: 上海交通大学, 2018.
WANG Jianhua. Direct simulations of ship maneuver using overset grid technique [D]. Shanghai: Shanghai Jiao Tong University, 2018.
16 蔡威. 基于重叠网格方法的浮式防波堤数值模拟研究[D]. 天津: 天津大学, 2019.
CAI Wei. Numerical simulation of floating breakwater based on overset grid method [D]. Tianjin: Tianjin University, 2019.
17 沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海: 上海交通大学, 2014.
SHEN Zhirong. Development of overset grid technique for hull-propeller-rudder interactions [D]. Shanghai: Shanghai Jiao Tong University, 2014.
18 林沐阳, 招启军, 赵国庆 基于滑移网格的倾转旋翼机全机干扰流场研究[J]. 航空科学技术, 2021, 32 (1): 100- 108
LIN Muyang, ZHAO Qijun, ZHAO Guoqing Research on the whole aircraft interference flow field of tilt-rotor aircraft based on sliding grid[J]. Aeronautical Science and Technology, 2021, 32 (1): 100- 108
19 LAUNDER B E, SPALDING D B The numerical com-putation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3 (2): 269- 289
doi: 10.1016/0045-7825(74)90029-2
20 SINNIGE T, VAN ARNHEM N, STOKKERMANS T C A, et al Wingtip-mounted propellers aerodynamic analysis of interaction affects and comparison with conventional layout[J]. Journal of Aircraft, 2019, 56 (1): 295- 312
doi: 10.2514/1.C034978
21 翟若岱. 太阳能飞机高效率螺旋桨设计关键技术研究[D]. 沈阳: 沈阳航空航天大学, 2017.
ZHAI Ruodai. Research on key technology of high efficiency propeller design for solar powered aircraft [D]. Shenyang: Shenyang Aerospace University, 2017.
[1] 云忠,温猛,罗自荣,陈龙. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415.
[2] 徐思远,杜军,赵光喜,魏正英. 45钢/锡铅合金复合结构熔融沉积中熔滴过渡行为[J]. 浙江大学学报(工学版), 2020, 54(11): 2224-2232.
[3] 云忠,温猛,蒋毅,陈龙,冯龙飞. 仿生蝠鲼胸鳍摆动推进机构设计与水动力分析[J]. 浙江大学学报(工学版), 2019, 53(5): 872-879.
[4] 刘立宁, 郗学峰, 杜广生, 雷丽. 侧风条件下加速超车过程车辆气动特性[J]. 浙江大学学报(工学版), 2019, 53(1): 174-179.
[5] 左曙光, 李悦姣, 吴旭东, 韦开君, 孙罕. 爪极电机气动噪声数值模拟及机理分析[J]. 浙江大学学报(工学版), 2017, 51(3): 612-619.
[6] 韩冬,龚国芳,刘毅,杨学兰. 基于不同阀芯结构的新型电液激振器[J]. 浙江大学学报(工学版), 2014, 48(5): 757-763.
[7] 杨骥, 郝志勇, 葛如炜, 郑康, 郑旭. 发动机冷却模块振动优化[J]. J4, 2012, 46(12): 2194-2200.
[8] 肖宝兰, 俞小莉,韩松,陆国栋,夏立峰. 翅片参数对车用中冷器流动传热性能的影响[J]. J4, 2010, 44(11): 2164-2168.
[9] 豆瑞锋 温治 李强 程淑明 邹航 冯霄红 董斌. 基于连续退火炉数学模型的炉温优化策略[J]. J4, 2007, 41(10): 1735-1738.
[10] 司俊龙 温治 刘训良. 基于水分蒸发非线性迁移的炭化室传热模型[J]. J4, 2007, 41(10): 1746-1749.