计算机技术与控制工程 |
|
|
|
|
基于卷积循环神经网络的芯片表面字符识别 |
熊帆( ),陈田*( ),卞佰成,刘军 |
上海电机学院 机械学院,上海 201306 |
|
Chip surface character recognition based on convolutional recurrent neural network |
Fan XIONG( ),Tian CHEN*( ),Bai-cheng BIAN,Jun LIU |
School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China |
引用本文:
熊帆,陈田,卞佰成,刘军. 基于卷积循环神经网络的芯片表面字符识别[J]. 浙江大学学报(工学版), 2023, 57(5): 948-956.
Fan XIONG,Tian CHEN,Bai-cheng BIAN,Jun LIU. Chip surface character recognition based on convolutional recurrent neural network. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 948-956.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.011
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I5/948
|
1 |
王珂, 杨芳, 姜杉 光学字符识别综述[J]. 计算机应用研究, 2020, 37 (Suppl.2): 22- 24 WANG Ke, YANG Fang, JIANG Shan Overview of optical character recognition[J]. Application Research of Computers, 2020, 37 (Suppl.2): 22- 24
|
2 |
陈景柱, 鲍玉斌 图像处理中基于改进YOLO的ROI提取算法研究[J]. 数学的实践与认识, 2020, 50 (22): 179- 185 CHEN Jing-zhu, BAO Yu-bin ROI extraction algorithm based on improved YOLO in image processing[J]. Journal of Mathematics in Practice and Theory, 2020, 50 (22): 179- 185
|
3 |
郭晓峰, 王耀南, 毛建旭 基于几何特征的IC芯片字符分割与识别方法[J]. 智能系统学报, 2020, 15 (1): 144- 151 GUO Xiao-feng, WANG Yao-nan, MAO Jian-xu IC chip character segmentation and recognition method based on geometric features[J]. CAAI Transactions on Intelligent Systems, 2020, 15 (1): 144- 151
doi: 10.11992/tis.201904028
|
4 |
姚文凤, 甄彤, 吕宗旺, 等 车牌字符分割与识别技术研究[J]. 现代电子技术, 2020, 43 (19): 65- 69 YAO Wen-feng, ZHEN Tong, LV Zong-wang, et al Research on technology of segmentation and recognition of license plate character[J]. Modern Electronics Technique, 2020, 43 (19): 65- 69
doi: 10.16652/j.issn.1004-373x.2020.19.016
|
5 |
马欣欣, 李小平 集装箱箱号字符识别关键技术的研究[J]. 现代电子技术, 2019, 42 (14): 131- 134 MA Xin-xin, LI Xiao-ping Research on key technologies for character recognition of container numbers[J]. Modern Electronics Technique, 2019, 42 (14): 131- 134
doi: 10.16652/j.issn.1004-373x.2019.14.030
|
6 |
白睿, 徐友春, 李永乐, 等 智能车道路场景数字字符识别技术[J]. 激光与光电子学进展, 2021, 57 (15): 178- 185 BAI Rui, XU You-chun, LI Yong-le, et al Digital character recognition technique for intelligent vehicles in road scenes[J]. Laser and Optoelectronics Progress, 2021, 57 (15): 178- 185
|
7 |
祁忠琪, 涂凯, 吴书楷, 等 基于深度学习的含堆叠字符的车牌识别算法[J]. 计算机应用研究, 2021, 38 (5): 1550- 1554 QI Zhong-qi, TU Kai, WU Shu-kai, et al Recognizing license plate with stacked characters based on deep learning[J]. Application Research of Computers, 2021, 38 (5): 1550- 1554
doi: 10.19734/j.issn.1001-3695.2020.04.0147
|
8 |
VISHNUVARDHAN A, SRIHARSHA M N An overview of text detection in natural scene images[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8 (7c2): 384- 387
|
9 |
ZHAI W, GAO T, FENG J Research on pre-processing methods for license plate recognition[J]. International Journal of Computer Vision and Image Processing, 2021, 11 (1): 47- 79
doi: 10.4018/IJCVIP.2021010104
|
10 |
LAROCA R, ZANLORENSI L A, GONÇALVES G R, et al An efficient and layout-independent automatic license plate recognition system based on the YOLO detector[J]. IET Intelligent Transport Systems, 2021, 15 (4): 483- 503
doi: 10.1049/itr2.12030
|
11 |
CHEN Z, YAN L, YIN S, et al Vehicle license plate recognition system based on deep learning in natural scene[J]. Journal of Artificial Intelligence, 2020, 2 (4): 167
doi: 10.32604/jai.2020.012716
|
12 |
NAIEMI F, GHODS V, KHALESI H A novel pipeline framework for multi oriented scene text image detection and recognition[J]. Expert Systems with Applications, 2021, 170: 114549
doi: 10.1016/j.eswa.2020.114549
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
14 |
殷航. 基于YOLO的自然场景中文文本检测算法研究[D]. 武汉: 武汉科技大学, 2020: 17. YIN Hang. Research on Chinese text detection algorithm for natural scenes based on YOLO [D]. Wuhan: Wuhan University of Science and Technology, 2020: 17.
|
15 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2019-02-25]. https://arxiv.org/abs/1804.02767v1.
|
16 |
傅勇, 潘晴, 田妮莉, 等 改进级联卷积神经网络的平面旋转人脸检测[J]. 计算机工程与设计, 2020, 41 (3): 856- 861 FU Yong, PAN Qing, TIAN Ni-li, et al Face detection of rotation in plane based on improved cascade CNN[J]. Computer Engineering and Applications, 2020, 41 (3): 856- 861
doi: 10.16208/j.issn1000-7024.2020.03.041
|
17 |
SHI B G, BAI X, YAO C An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (11): 2298- 2304
|
18 |
MERZBAN M H, MAHMOUD E Efficient solution of Otsu multilevel image thresholding: a comparative study[J]. Expert Systems with Applications, 2019, 116: 299- 309
doi: 10.1016/j.eswa.2018.09.008
|
19 |
BRADLEY D, ROTH G Adaptive thresholding using the integral image[J]. Journal of Graphics Tools, 2007, 12 (2): 13- 21
doi: 10.1080/2151237X.2007.10129236
|
20 |
SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting [C]// Advances in Neural Information Processing Systems. Montreal: NIPS, 2015: 802-810.
|
21 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// International Conference on Learning Representations. San Diego: ICLR, 2015: 1-14.
|
22 |
HOWARD A, SANGLER M, CHU G, et al. Searching for mobilenetv3 [C]// Proceedings of the IEEE/CVF Intern-ational Conference on Computer Vision. California: IEEE/CVF, 2019: 1314-1324.
|
23 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [C]// International Conference on Learning Representations. San Diego: ICLR, 2015: 1-15. .
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|