计算机技术与控制工程 |
|
|
|
|
基于无线D2D网络的分层联邦学习 |
刘翀赫( ),余官定*( ),刘胜利 |
浙江大学 信息与电子工程学院,浙江 杭州 310027 |
|
Hierarchical federated learning based on wireless D2D networks |
Chong-he LIU( ),Guan-ding YU*( ),Sheng-li LIU |
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China |
1 |
CHEN M, YANG Z, SAAD W, et al A Joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 20 (1): 269- 283
|
2 |
ZHU G, LIU D, DU Y, et al Towards an intelligent edge: wireless communication meets machine learning[J]. IEEE Communications Magazine, 2020, 58 (1): 19- 25
doi: 10.1109/MCOM.001.1900103
|
3 |
CHEN M, GUNDUZ D, HUANG K, et al Distributed learning in wireless networks: recent progress and future challenges[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (12): 3579- 3605
doi: 10.1109/JSAC.2021.3118346
|
4 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Artificial Intelligence and Statistics. Lauderdale: PMLR, 2017: 1273-1282.
|
5 |
LIM W Y B, LUONG N C, HOANG D T, et al Federated learning in mobile edge networks: a comprehensive survey[J]. IEEE Communications Surveys and Tutorials, 2020, 22 (3): 2031- 2063
doi: 10.1109/COMST.2020.2986024
|
6 |
LIM W Y B, NG J S, XIONG Z, et al Decentralized edge intelligence: a dynamic resource allocation framework for hierarchical federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33 (3): 536- 550
|
7 |
WANG Z, XU H, LIU J, et al. Accelerating federated learning with cluster construction and hierarchical aggregation [EB/OL]. [2022-02-01]. https://www.computer.org/csdl/journal/tm/5555/01/09699080/1ADJeS80Gvm.
|
8 |
FENG D, LU L, YUANWU Y, et al Device-to-device communications in cellular networks[J]. IEEE Communications Magazine, 2014, 52 (4): 49- 55
doi: 10.1109/MCOM.2014.6807946
|
9 |
ASADI A, WANG Q, MANCUSO V A survey on device-to-device communication in cellular networks[J]. IEEE Communications Surveys and Tutorials, 2014, 16 (4): 1801- 1819
doi: 10.1109/COMST.2014.2319555
|
10 |
YU D, ZOU Z, CHEN S, et al Decentralized parallel sgd with privacy preservation in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (6): 5211- 5220
doi: 10.1109/TVT.2021.3064877
|
11 |
XING H, SIMEONE O, BI S. Decentralized federated learning via SGD over wireless D2D networks [C]// 21st International Workshop on Signal Processing Advances in Wireless Communications. Atlanta: IEEE, 2020: 1-5.
|
12 |
POKHREL S R, CHOI J. A decentralized federated learning approach for connected autonomous vehicles [C]// IEEE Wireless Communications and Networking Conference Workshops. Seoul : IEEE, 2020: 1-6.
|
13 |
ZHU L, LIU C, YUAN J, et al. Machine learning-based resource optimization for D2D communication underlaying networks [C]// IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria: IEEE, 2020: 1-6.
|
14 |
HOANG T D, LE L B, LENGOC T Resource allocation for D2D communication underlaid cellular networks using graph-based approach[J]. IEEE Transactions on Wireless Communications, 2016, 15 (10): 7099- 7113
doi: 10.1109/TWC.2016.2597283
|
15 |
OZFATURA E, RINI S, GÜNDÜZ D. Decentralized SGD with over-the-air computation [C]// IEEE Global Communications Conference. Taipei: IEEE, 2020: 1-6.
|
16 |
NISHIO T, YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge [C]// IEEE International Conference on Communications. Shanghai: IEEE, 2019: 1-7.
|
17 |
WEN D, BENNIS M, HUANG K Joint parameter-and-bandwidth allocation for improving the efficiency of partitioned edge learning[J]. IEEE Transactions on Wireless Communications, 2020, 19 (12): 8272- 8286
doi: 10.1109/TWC.2020.3021177
|
18 |
JIANG Z, YU G, CAI Y, Decentralized edge learning via unreliable device-to-device communications [J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9041-9055
|
19 |
WEN D, JEON K J, BENNIS M, et al Adaptive subcarrier, parameter, and power allocation for partitioned edge learning over broadband channels[J]. IEEE Transactions on Wireless Communications, 2021, 20 (12): 8348- 8361
doi: 10.1109/TWC.2021.3092075
|
20 |
ZENG Q, DU Y, HUANG K, et al Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing[J]. IEEE Transactions on Wireless Communications, 2021, 20 (12): 7947- 7962
doi: 10.1109/TWC.2021.3088910
|
21 |
KOLOSKOVA A, LOIZOU N, BOREIRI S, et al. A unified theory of decentralized sgd with changing topology and local updates [C]// International Conference on Machine Learning. Vienna: PMLR, 2020: 5381-5393.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|