Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 573-582    DOI: 10.3785/j.issn.1008-973X.2023.03.015
土木工程     
基于强度理论的内聚力模型的有限元实现及应用
石天翔1(),张昕1,王洋洋1,郑克洪2,张永强1,*()
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江理工大学 机械工程学院,浙江 杭州 310018
Finite element implementation and application of strength theory based cohesive zone model
Tian-xiang SHI1(),Xin ZHANG1,Yang-yang WANG1,Ke-hong ZHENG2,Yong-qiang ZHANG1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(2243 KB)   HTML
摘要:

在对基于强度理论的内聚力模型(ST-CZM)进行二维整理及三维拓展的基础上,使用Abaqus用户单元子程序(UEL)对该模型进行有限元实现. 通过经典界面破坏算例验证ST-CZM有限元模型的有效性和准确性,建立纤维增强复合材料(FRP)加固混凝土模型,采用ST-CZM模拟FRP与混凝土界面间的黏结破坏过程,实现ST-CZM在复杂工况下的应用. 相较于传统基于牵引力准则的内聚力模型,ST-CZM具有更灵活的混合模态耦合方式,且其切向和法向的强度模型相互独立,ST-CZM的收敛性更好,对强度的预测更准确. 所有算例表明,相较于传统基于牵引力准则的内聚力模型,ST-CZM有限元模型能够更好地实现黏结界面峰值应力的预测和损伤阶段的模拟.

关键词: 强度理论内聚力模型Abaqus UEL界面破坏    
Abstract:

The two-dimensional strength theory based cohesive zone model (ST-CZM) was extended to the three-dimensional case for a wider application. Furthermore, the finite element implementation of the ST-CZM was carried out using the Abaqus user element subroutine (UEL). The validity and accuracy of the ST-CZM were validated by several typical numerical benchmarks. On this basis, the ST-CZM finite element model was used to simulate the bond-slip behavior of the interface between fiber reinforced polymer (FRP) and concrete, which extended the application of the ST-CZM in complex working conditions. Compared to the traditional “traction laws” based cohesive zone model (CZM), the ST-CZM provides improved flexibility in mode mixity and allows independent selection of strength models in normal and tangent directions. In addition, the ST-CZM exhibits better convergence performance and more accurate strength predictions compared to “traction laws” based CZMs. All examples show that compared to the traditional “traction laws” based CZM, the ST-CZM finite element model can better predict the peak stress of the bonding interface and simulate the mixed-mode damage process, showing more realistic cracking process.

Key words: strength theory    cohesive zone model    Abaqus UEL    interface fracture
收稿日期: 2022-03-29 出版日期: 2023-03-31
CLC:  TB 121  
基金资助: 国家自然科学基金资助项目(12172019, 52004245)
通讯作者: 张永强     E-mail: stxzj@zju.edu.cn;cyqzhang@zju.edu.cn
作者简介: 石天翔 (1997—),男,硕士生,从事强度理论及断裂力学研究. orcid.org/0000-0001-6300-4138. E-mail: stxzj@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
石天翔
张昕
王洋洋
郑克洪
张永强

引用本文:

石天翔,张昕,王洋洋,郑克洪,张永强. 基于强度理论的内聚力模型的有限元实现及应用[J]. 浙江大学学报(工学版), 2023, 57(3): 573-582.

Tian-xiang SHI,Xin ZHANG,Yang-yang WANG,Ke-hong ZHENG,Yong-qiang ZHANG. Finite element implementation and application of strength theory based cohesive zone model. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 573-582.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.015        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/573

图 1  单向荷载下黏结单元应力-相对位移关系
图 2  二维牵引力破坏面
图 3  三维牵引力破坏面
模型 σI /MPa ueI/mm KI /(N·mm?3) GI/(N·mm?1) σII /MPa ueII /mm KII /(N·mm?3) GII /(N·mm?1)
双悬臂梁 30 3.0×10?4 1.0×105 0.26 60 6.0×10?4 1.0×105 1.002
固定比率混合 30 3.0×10?4 1.0×105 0.26 60 6.0×10?4 1.0×105 1.002
混合模态弯曲 100 4.0×10?4 2.5×105 0.50 100 4.0×10?4 2.5×105 0.500
表 1  基于强度理论的内聚力模型验证算例黏结单元参数[18]
模型 E11 /GPa E22, E33 /GPa G12, G13 /(N·mm?1) G23 /(N·mm?1) v12, v13 v23
双悬臂梁 120 10.5 5.25 3.48 0.30 0.51
固定比率混合 120 10.5 5.25 3.48 0.30 0.51
混合模态弯曲 122 122.0 0.25 0.25
表 2  基于强度理论的内聚力模型验证算例的基体参数
图 4  双悬臂梁模型试样的几何尺寸及边界条件
图 5  双悬臂梁模型试验结果与数值模拟结果对比
图 6  固定比率混合模型边界条件
图 7  固定比率混合模型数值模拟结果对比
图 8  混合模态弯曲模型试样的几何尺寸
图 9  混合模态弯曲模型数值与解析结果对比
试验数值模型 σI /MPa ueI/mm KI /(N·mm?3 GI/(N·mm?1 σII /MPa ueII /mm KII /(N·mm?3 GII /(N·mm?1
单剪 8.77 0.019 1 459.160 0.494 8.77 0.019 1 459.160 0.494
四点弯曲梁 12.00 0.029 0 0.297 0.891 12.00 0.029 0 0.297 0.891
表 3  基于强度理论内聚力模型实用算例黏结单元参数
图 10  单剪模型试件几何视图
图 11  单剪模型试验与数值模拟结果对比
图 12  单剪模型模拟过程损伤云图
图 13  四点弯曲梁模型几何视图
图 14  L2D1250试验裂缝图[24]
图 15  L2D1250局部脱黏标记图[24]
图 16  L2D1250模拟损伤云图
图 17  L2D1250试验与数值模拟结果对比
图 18  L2D1750试验裂缝图[24]
图 19  L2D1750局部脱黏标记图[24]
图 20  L2D1750模拟损伤云图
图 21  L2D1750试验与数值模拟结果对比
1 KO H, MATTHYS S, PALMIERI A, et al Development of a simplified bond stress–slip model for bonded FRP–concrete interfaces[J]. Construction and Building Materials, 2014, 68: 142- 157
doi: 10.1016/j.conbuildmat.2014.06.037
2 EBADI-RAJOLI J, AKHAVAN-SAFAR A, HOSSEINI-TOUDESHKY H, et al Progressive damage modeling of composite materials subjected to mixed mode cyclic loading using cohesive zone model[J]. Mechanics of Materials, 2020, 143: 103322
doi: 10.1016/j.mechmat.2020.103322
3 WONG R S Y, VECCHIO F J Towards modeling of reinforced concrete members with externally bonded fiber-reinforced polymer composites[J]. ACI Structural Journal, 2003, 100 (1): 47- 55
4 WU Z, YUAN H, NIU H Stress transfer and fracture propagation in different kinds of adhesive joints[J]. Journal of Engineering Mechanics, 2002, 128 (5): 562- 573
doi: 10.1061/(ASCE)0733-9399(2002)128:5(562)
5 WU Z, YIN J Fracturing behaviors of FRP-strengthened concrete structures[J]. Engineering Fracture Mechanics, 2003, 70 (10): 1339- 1355
doi: 10.1016/S0013-7944(02)00100-5
6 XU Y, GUO Y, LIANG L, et al A unified cohesive zone model for simulating adhesive failure of composite structures and its parameter identification[J]. Composite Structures, 2017, 182: 555- 565
doi: 10.1016/j.compstruct.2017.09.012
7 LI S, THOULESS M D, WAAS A M, et al Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite[J]. Engineering Fracture Mechanics, 2006, 73 (1): 64- 78
doi: 10.1016/j.engfracmech.2005.07.004
8 NEEDLEMAN A A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54 (3): 525- 531
doi: 10.1115/1.3173064
9 XU X P, NEEDLEMAN A Void nucleation by inclusion debonding in a crystal matrix[J]. Modelling and Simulation in Materials Science and Engineering, 1999, 1 (2): 111
10 DIMITRI R, TRULLO M, DE LORENZIS L, et al Coupled cohesive zone models for mixed-mode fracture: a comparative study[J]. Engineering Fracture Mechanics, 2015, 148: 145- 179
doi: 10.1016/j.engfracmech.2015.09.029
11 YANG Q D, THOULESS M D Mixed-mode fracture analyses of plastically-deforming adhesive joints[J]. International Journal of Fracture, 2001, 110: 175- 187
doi: 10.1023/A:1010869706996
12 ZANI M, FANTERIA D, CATAPANO A, et al A consistent energy-based cohesive zone model to simulate delamination between differently oriented plies[J]. Composite Structures, 2022, 282: 115042
doi: 10.1016/j.compstruct.2021.115042
13 NAIRN J A, AIMENE Y E A re-evaluation of mixed-mode cohesive zone modeling based on strength concepts instead of traction laws[J]. Engineering Fracture Mechanics, 2021, 248: 107704
doi: 10.1016/j.engfracmech.2021.107704
14 刘敏, 李旭 基于内聚力理论的二维二次界面单元在ABAQUS中的UEL程序实现[J]. 计算力学学报, 2019, 36 (5): 693- 698
LIU Min, LI Xu The finite element formulation for a 2D quadratic cohesive element and its program implementation of UEL in ABAQUS[J]. Chinese Journal of Computational Mechanics, 2019, 36 (5): 693- 698
doi: 10.7511/jslx20180805001
15 刘国威, 李庆斌, 左正 相场断裂模型分步算法在ABAQUS中的实现[J]. 岩石力学与工程学报, 2016, 35 (5): 1019- 1030
LIU Guo-wei, LI Qing-bin, ZUO Zheng Implementation of a staggered algorithm for a phase field model in ABAQUS[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (5): 1019- 1030
16 GARG N, PRUSTY B G, OOI E T, et al Application of scaled boundary finite element method for delamination analysis of composite laminates using cohesive zone modelling[J]. Composite Structures, 2020, 253: 112773
doi: 10.1016/j.compstruct.2020.112773
17 PARK K, PAULINO G H Computational implementation of the PPR potential-based cohesive model in ABAQUS: educational perspective[J]. Engineering Fracture Mechanics, 2012, 93: 239- 262
doi: 10.1016/j.engfracmech.2012.02.007
18 REEDER J R, CREWS J H Mixed-mode bending method for delamination testing[J]. AIAA Journal, 1990, 28 (7): 1270- 1276
doi: 10.2514/3.25204
19 HARPER P W, HALLETT S R Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75 (16): 4774- 4792
doi: 10.1016/j.engfracmech.2008.06.004
20 CAMANHO P P, DÁVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials [R]. [S. l.]: NASA, 2002.
21 SEPASDAR R, SHAKIBA M Overcoming the convergence difficulty of cohesive zone models through a Newton-Raphson modification technique[J]. Engineering Fracture Mechanics, 2020, 233: 107046
doi: 10.1016/j.engfracmech.2020.107046
22 WANG Z, XIAN G Cohesive zone model prediction of debonding failure in CFRP-to-steel bonded interface with a ductile adhesive[J]. Composites Science and Technology, 2022, 230: 109315
doi: 10.1016/j.compscitech.2022.109315
23 ZHANG P, LEI D, REN Q, et al Experimental and numerical investigation of debonding process of the FRP plate-concrete interface[J]. Construction and Building Materials, 2019, 235: 117457
24 FU B, TENG J G, CHEN G M, et al Effect of load distribution on IC debonding in FRP-strengthened RC beams: full-scale experiments[J]. Composite Structures, 2018, 188: 483- 496
doi: 10.1016/j.compstruct.2018.01.026
25 ABDALLA J A, ABU-OBEIDAH A S, HAWILEH R A, et al Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: an experimental study[J]. Construction and Building Materials, 2016, 128: 24- 37
doi: 10.1016/j.conbuildmat.2016.10.071
26 MAZZOTTI C, SAVOIA M, FERRACUTI B A new single-shear set-up for stable debonding of FRP–concrete joints[J]. Construction and Building Materials, 2009, 23 (4): 1529- 1537
doi: 10.1016/j.conbuildmat.2008.04.003
27 LI W, CHEN W, TANG L, et al A general strength model for fiber bundle composites under transverse tension or interlaminar shear[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 45- 55
doi: 10.1016/j.compositesa.2019.03.009
28 齐虎, 李云贵, 吕西林 混凝土弹塑性损伤本构模型参数及其工程应用[J]. 浙江大学学报: 工学版, 2015, 49 (3): 547- 554
QI Hu, LI Yun-gui, LV Xi-lin Study of variables of elastic plastic damage model and its engineering application[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (3): 547- 554
29 方恩权, 石国柱 碳纤维增强塑料布与混凝土基层粘结行为研究[J]. 建筑材料学报, 2007, 10 (4): 412- 417
FANG En-quan, SHI Guo-zhu Study of bonding behavior between CFRP sheet and concrete[J]. Journal of Building Materials, 2007, 10 (4): 412- 417
30 TENG J G, SMITH S T, YAO J, et al Intermediate crack-induced debonding in RC beams and slabs[J]. Construction and Building Materials, 2003, 17 (6/7): 447- 462
31 TENG J G, CHEN J F. Mechanics of debonding in FRP-plated RC beams [J]. Structures and Buildings. 2009, 162(5): 335-345.
[1] 肖敏敏,钱思博. 基于改进内聚力模型的沥青超薄罩面层间失效行为分析[J]. 浙江大学学报(工学版), 2022, 56(9): 1780-1788.
[2] 周剑,马刚,周伟,程勇刚,黄泉水,曹学兴. 基于FDEM的岩石颗粒破碎后碎片形状的统计分析[J]. 浙江大学学报(工学版), 2021, 55(2): 348-357.
[3] 汪必升,李毅波,袁顺,李剑. 铝锂合金/FM94胶接接头内聚力模型参数识别[J]. 浙江大学学报(工学版), 2020, 54(2): 365-373.
[4] 钱治宏, 陶伟明, 杨兴旺. 多铁性复合材料非理想界面的模拟及其影响[J]. J4, 2012, 46(5): 935-940.