土木工程 |
|
|
|
|
基于强度理论的内聚力模型的有限元实现及应用 |
石天翔1( ),张昕1,王洋洋1,郑克洪2,张永强1,*( ) |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 浙江理工大学 机械工程学院,浙江 杭州 310018 |
|
Finite element implementation and application of strength theory based cohesive zone model |
Tian-xiang SHI1( ),Xin ZHANG1,Yang-yang WANG1,Ke-hong ZHENG2,Yong-qiang ZHANG1,*( ) |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China |
引用本文:
石天翔,张昕,王洋洋,郑克洪,张永强. 基于强度理论的内聚力模型的有限元实现及应用[J]. 浙江大学学报(工学版), 2023, 57(3): 573-582.
Tian-xiang SHI,Xin ZHANG,Yang-yang WANG,Ke-hong ZHENG,Yong-qiang ZHANG. Finite element implementation and application of strength theory based cohesive zone model. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 573-582.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.015
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I3/573
|
1 |
KO H, MATTHYS S, PALMIERI A, et al Development of a simplified bond stress–slip model for bonded FRP–concrete interfaces[J]. Construction and Building Materials, 2014, 68: 142- 157
doi: 10.1016/j.conbuildmat.2014.06.037
|
2 |
EBADI-RAJOLI J, AKHAVAN-SAFAR A, HOSSEINI-TOUDESHKY H, et al Progressive damage modeling of composite materials subjected to mixed mode cyclic loading using cohesive zone model[J]. Mechanics of Materials, 2020, 143: 103322
doi: 10.1016/j.mechmat.2020.103322
|
3 |
WONG R S Y, VECCHIO F J Towards modeling of reinforced concrete members with externally bonded fiber-reinforced polymer composites[J]. ACI Structural Journal, 2003, 100 (1): 47- 55
|
4 |
WU Z, YUAN H, NIU H Stress transfer and fracture propagation in different kinds of adhesive joints[J]. Journal of Engineering Mechanics, 2002, 128 (5): 562- 573
doi: 10.1061/(ASCE)0733-9399(2002)128:5(562)
|
5 |
WU Z, YIN J Fracturing behaviors of FRP-strengthened concrete structures[J]. Engineering Fracture Mechanics, 2003, 70 (10): 1339- 1355
doi: 10.1016/S0013-7944(02)00100-5
|
6 |
XU Y, GUO Y, LIANG L, et al A unified cohesive zone model for simulating adhesive failure of composite structures and its parameter identification[J]. Composite Structures, 2017, 182: 555- 565
doi: 10.1016/j.compstruct.2017.09.012
|
7 |
LI S, THOULESS M D, WAAS A M, et al Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite[J]. Engineering Fracture Mechanics, 2006, 73 (1): 64- 78
doi: 10.1016/j.engfracmech.2005.07.004
|
8 |
NEEDLEMAN A A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54 (3): 525- 531
doi: 10.1115/1.3173064
|
9 |
XU X P, NEEDLEMAN A Void nucleation by inclusion debonding in a crystal matrix[J]. Modelling and Simulation in Materials Science and Engineering, 1999, 1 (2): 111
|
10 |
DIMITRI R, TRULLO M, DE LORENZIS L, et al Coupled cohesive zone models for mixed-mode fracture: a comparative study[J]. Engineering Fracture Mechanics, 2015, 148: 145- 179
doi: 10.1016/j.engfracmech.2015.09.029
|
11 |
YANG Q D, THOULESS M D Mixed-mode fracture analyses of plastically-deforming adhesive joints[J]. International Journal of Fracture, 2001, 110: 175- 187
doi: 10.1023/A:1010869706996
|
12 |
ZANI M, FANTERIA D, CATAPANO A, et al A consistent energy-based cohesive zone model to simulate delamination between differently oriented plies[J]. Composite Structures, 2022, 282: 115042
doi: 10.1016/j.compstruct.2021.115042
|
13 |
NAIRN J A, AIMENE Y E A re-evaluation of mixed-mode cohesive zone modeling based on strength concepts instead of traction laws[J]. Engineering Fracture Mechanics, 2021, 248: 107704
doi: 10.1016/j.engfracmech.2021.107704
|
14 |
刘敏, 李旭 基于内聚力理论的二维二次界面单元在ABAQUS中的UEL程序实现[J]. 计算力学学报, 2019, 36 (5): 693- 698 LIU Min, LI Xu The finite element formulation for a 2D quadratic cohesive element and its program implementation of UEL in ABAQUS[J]. Chinese Journal of Computational Mechanics, 2019, 36 (5): 693- 698
doi: 10.7511/jslx20180805001
|
15 |
刘国威, 李庆斌, 左正 相场断裂模型分步算法在ABAQUS中的实现[J]. 岩石力学与工程学报, 2016, 35 (5): 1019- 1030 LIU Guo-wei, LI Qing-bin, ZUO Zheng Implementation of a staggered algorithm for a phase field model in ABAQUS[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (5): 1019- 1030
|
16 |
GARG N, PRUSTY B G, OOI E T, et al Application of scaled boundary finite element method for delamination analysis of composite laminates using cohesive zone modelling[J]. Composite Structures, 2020, 253: 112773
doi: 10.1016/j.compstruct.2020.112773
|
17 |
PARK K, PAULINO G H Computational implementation of the PPR potential-based cohesive model in ABAQUS: educational perspective[J]. Engineering Fracture Mechanics, 2012, 93: 239- 262
doi: 10.1016/j.engfracmech.2012.02.007
|
18 |
REEDER J R, CREWS J H Mixed-mode bending method for delamination testing[J]. AIAA Journal, 1990, 28 (7): 1270- 1276
doi: 10.2514/3.25204
|
19 |
HARPER P W, HALLETT S R Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75 (16): 4774- 4792
doi: 10.1016/j.engfracmech.2008.06.004
|
20 |
CAMANHO P P, DÁVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials [R]. [S. l.]: NASA, 2002.
|
21 |
SEPASDAR R, SHAKIBA M Overcoming the convergence difficulty of cohesive zone models through a Newton-Raphson modification technique[J]. Engineering Fracture Mechanics, 2020, 233: 107046
doi: 10.1016/j.engfracmech.2020.107046
|
22 |
WANG Z, XIAN G Cohesive zone model prediction of debonding failure in CFRP-to-steel bonded interface with a ductile adhesive[J]. Composites Science and Technology, 2022, 230: 109315
doi: 10.1016/j.compscitech.2022.109315
|
23 |
ZHANG P, LEI D, REN Q, et al Experimental and numerical investigation of debonding process of the FRP plate-concrete interface[J]. Construction and Building Materials, 2019, 235: 117457
|
24 |
FU B, TENG J G, CHEN G M, et al Effect of load distribution on IC debonding in FRP-strengthened RC beams: full-scale experiments[J]. Composite Structures, 2018, 188: 483- 496
doi: 10.1016/j.compstruct.2018.01.026
|
25 |
ABDALLA J A, ABU-OBEIDAH A S, HAWILEH R A, et al Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: an experimental study[J]. Construction and Building Materials, 2016, 128: 24- 37
doi: 10.1016/j.conbuildmat.2016.10.071
|
26 |
MAZZOTTI C, SAVOIA M, FERRACUTI B A new single-shear set-up for stable debonding of FRP–concrete joints[J]. Construction and Building Materials, 2009, 23 (4): 1529- 1537
doi: 10.1016/j.conbuildmat.2008.04.003
|
27 |
LI W, CHEN W, TANG L, et al A general strength model for fiber bundle composites under transverse tension or interlaminar shear[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 45- 55
doi: 10.1016/j.compositesa.2019.03.009
|
28 |
齐虎, 李云贵, 吕西林 混凝土弹塑性损伤本构模型参数及其工程应用[J]. 浙江大学学报: 工学版, 2015, 49 (3): 547- 554 QI Hu, LI Yun-gui, LV Xi-lin Study of variables of elastic plastic damage model and its engineering application[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (3): 547- 554
|
29 |
方恩权, 石国柱 碳纤维增强塑料布与混凝土基层粘结行为研究[J]. 建筑材料学报, 2007, 10 (4): 412- 417 FANG En-quan, SHI Guo-zhu Study of bonding behavior between CFRP sheet and concrete[J]. Journal of Building Materials, 2007, 10 (4): 412- 417
|
30 |
TENG J G, SMITH S T, YAO J, et al Intermediate crack-induced debonding in RC beams and slabs[J]. Construction and Building Materials, 2003, 17 (6/7): 447- 462
|
31 |
TENG J G, CHEN J F. Mechanics of debonding in FRP-plated RC beams [J]. Structures and Buildings. 2009, 162(5): 335-345.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|