Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (12): 2471-2477    DOI: 10.3785/j.issn.1008-973X.2022.12.016
土木工程、水利工程     
旋转压实中颗粒运动与压实特性的关联机制
赵立财1,2(),卞雨馨3
1. 台湾科技大学 营建工程系,台湾 台北 106335
2. 中铁十九局集团第三工程有限公司,辽宁 沈阳 110136
3. 四川农业大学 建筑与城乡规划学院,四川 成都 611830
Mechanism of correlation between particle motion and compaction characteristics in gyratory compaction
Li-cai ZHAO1,2(),Yu-xin BIAN3
1. Department of Civil and Construction Engineering, Taiwan University of Science and Technology, Taipei 106335, China
2. China Railway 19th Bureau Group Third Engineering Company Limited, Shenyang 110136, China
3. College of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China
 全文: PDF(4453 KB)   HTML
摘要:

为了从颗粒运动角度揭示级配碎石的压实机理,基于离散元数值模拟方法构建考虑骨料真实形状特征的多面体骨料试样. 通过虚拟旋转压实试验,研究级配碎石试样不同位置骨料在压实过程中的运动特征,从细观角度揭示级配碎石在旋转压实过程中的颗粒运动与压实特性的关联机制. 结果表明,压实试样各部分的颗粒运动响应均呈现相似的规律,中间位置的颗粒运动和压实特性可以评估试样的压实质量. 压实阶段可分成初始压实、过渡压实、锁固和压实4个阶段,颗粒运动的锁固点出现在锁固阶段结束时,锁固点的出现可以作为试样进入压密阶段的标志. 颗粒运动特征相较于试样内部孔隙率的变化,对评价压实质量更具优越性.

关键词: 旋转压实颗粒运动压实质量锁固点智能压实    
Abstract:

To reveal the compaction mechanism of graded aggregates from the perspective of particle motion, polyhedral aggregate specimens were constructed considering the real shape characteristics of aggregates based on the discrete element numerical simulation method. Through the virtual gyratory compaction test, the motion characteristics of the aggregates at different positions of the graded aggregate specimens during the compaction process were investigated. And the correlation mechanism between the particle motion and the compaction characteristics of the graded aggregates were revealed during the gyratory compaction process from a fine viewpoint. Results show that the particle motion responses of all parts of the compacted specimens show similar patterns, and the particle motion and compaction characteristics at intermediate positions can assess the compaction quality of the specimens. The compaction stage can be divided into four stages: initial compaction, transition compaction, locking and compaction. The locking point of particle motion appears at the end of the locking stage, and the appearance of the locking point can be used as a sign that the specimen enters the compacting stage. The particle motion characteristics are superior to the change in porosity inside the specimen to evaluate the compaction quality.

Key words: gyratory compaction    particle motion    compaction quality    locking point    smart compaction
收稿日期: 2022-01-09 出版日期: 2023-01-03
CLC:  U 416.1  
基金资助: 辽宁省“兴辽英才计划”青年拔尖人才资助项目(XLYC2007146)
作者简介: 赵立财(1985—),男,正高级工程师,博士,从事岩土与结构相互作用、路面材料与结构行为理论研究.orcid.org/0000-0002-5438-7314. E-mail: zhaolicai1314@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵立财
卞雨馨

引用本文:

赵立财,卞雨馨. 旋转压实中颗粒运动与压实特性的关联机制[J]. 浙江大学学报(工学版), 2022, 56(12): 2471-2477.

Li-cai ZHAO,Yu-xin BIAN. Mechanism of correlation between particle motion and compaction characteristics in gyratory compaction. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2471-2477.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.016        https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2471

图 1  级配碎石的不同骨料形状
d/mm P/% d/mm P/% d/mm P/% d/mm P/%
22.40 100 16.00 83.0 9.50 50.0 2.36 0.5
19.00 92.0 13.20 75.0 4.75 12.0 1.60 0
表 1  虚拟多面体试样颗粒级配
图 2  多面体骨料生成与虚拟模型构建
图 3  不同粒径的多面体骨料
图 4  线性接触模型细观组件
图 5  颗粒运动监测点及旋转压实流程图
图 6  压实高度和孔隙率随旋转压实次数的变化曲线
图 7  监测点2欧拉角随旋转压实次数的变化曲线
图 8  各监测点颗粒的相对转角随旋转压实次数的变化曲线
图 9  根据相对转角变化特征对压实阶段进行划分
图 10  试样中部监测点颗粒的相对转角随旋转压实次数的变化曲线
图 11  级配碎石压实过程中颗粒姿态调整示意图
1 叶阳升, 朱宏伟, 尧俊凯, 等 高速铁路路基振动压实理论与智能压实技术综述[J]. 中国铁道科学, 2021, 42 (5): 1- 11
YE Yang-sheng, ZHU Hong-wei, YAO Jun-kai, et al Review of vibration compaction theory and intelligent compaction technology of high-speed railway subgrade[J]. China Railway Science, 2021, 42 (5): 1- 11
doi: 10.3969/j.issn.1001-4632.2021.05.01
2 ZHANG J K, LING J M, QIAN J S, et al. Application of gyratory compaction for determining the target values for pavement subgrade compaction [C]// Proceedings of GeoShanghai 2018 International Conference: Transportation Geotechnics and Pavement Engineering. [S.l.]: Springer, 2018 : 311–318.
3 ZHANG J K, WHITE D J, VENNAPUSA P K R Estimating mechanistic parameters for subgrade using gyratory compaction with pressure distribution analyzer[J]. Journal of Materials in Civil Engineering, 2017, 29 (11): 04017216
doi: 10.1061/(ASCE)MT.1943-5533.0002028
4 PETERSON R L, MAHBOUB K C, ANDERSON R M, et al Comparing superpave gyratory compactor data to field cores[J]. Journal of Materials in Civil Engineering, 2004, 16 (1): 78- 83
doi: 10.1061/(ASCE)0899-1561(2004)16:1(78)
5 GONG F Y, LIU Y, ZHOU X D, et al Lab assessment and discrete element modeling of asphalt mixture during compaction with elongated and flat coarse aggregates[J]. Construction and Building Materials, 2018, 182: 573- 579
doi: 10.1016/j.conbuildmat.2018.06.059
6 CERNI G, CAMILLI S Comparative analysis of gyratory and proctor compaction processes of unbound granular materials[J]. Road Materials and Pavement Design, 2011, 12 (2): 397- 421
doi: 10.1080/14680629.2011.9695251
7 COSENTINO P J, BLEAKLEY A M, SAJJADI A M, et al Evaluating laboratory compaction techniques of reclaimed asphalt pavement[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2335 (1): 89- 98
doi: 10.3141/2335-10
8 RIBAS C Y, THIVES L P Evaluation of effect of compaction method on the macrostructure of asphalt mixtures through digital image processing under Brazilian conditions[J]. Construction and Building Materials, 2019, 228: 116821
doi: 10.1016/j.conbuildmat.2019.116821
9 谭波, 杨涛 振动旋转压实级配碎石制样方法及力学性能试验[J]. 华侨大学学报:自然科学版, 2021, 42 (3): 322- 328
TAN Bo, YANG Tao Sample preparation method and mechanical property test of graded crushed stone under gyrator and vibration compaction[J]. Journal of Huaqiao University: Natural Science, 2021, 42 (3): 322- 328
10 刘栋, 李立寒 旋转压实成型水泥稳定类基层材料试验[J]. 中国公路学报, 2019, 32 (11): 118- 128
LIU Dong, LI Li-han Experiment on gyratory compaction of cement stabilized base course materials[J]. China Journal of Highway and Transport, 2019, 32 (11): 118- 128
11 MASAD E, MUHUNTHAN B, SHASHIDHAR N, et al Internal structure characterization of asphalt concrete using image analysis[J]. Journal of Computing in Civil Engineering, 1999, 13 (2): 88- 95
doi: 10.1061/(ASCE)0887-3801(1999)13:2(88)
12 王萌, 肖源杰, 王小明, 等 道砟压实质量与颗粒运动关联特征及内在机制研究[J]. 铁道科学与工程学报, 2021, 18 (8): 2055- 2065
WANG Meng, XIAO Yuan-jie, WANG Xiao-ming, et al Investigating correlation characteristics and intrinsic mechanism between compaction quality and particle movement of railway ballasts[J]. Journal of Railway Science and Engineering, 2021, 18 (8): 2055- 2065
doi: 10.19713/j.cnki.43-1423/u.t20210240
13 WANG X, SHEN S H, HUANG H, et al Characterization of particle movement in Superpave gyratory compactor at meso-scale using SmartRock sensors[J]. Construction and Building Materials, 2018, 175: 206- 214
doi: 10.1016/j.conbuildmat.2018.04.146
14 XIAO Y J, WANG M, WANG X M, et al Evaluating gyratory compaction characteristics of unbound permeable aggregate base materials from meso-scale particle movement measured by smart sensing technology[J]. Materials, 2021, 14 (15): 4287
doi: 10.3390/ma14154287
15 CHEN J S, HUANG B S, CHEN F, et al Application of discrete element method to Superpave gyratory compaction[J]. Road Materials and Pavement Design, 2012, 13 (3): 480- 500
doi: 10.1080/14680629.2012.694160
16 GONG F Y, ZHOU X D, YOU Z P, et al Using discrete element models to track movement of coarse aggregates during compaction of asphalt mixture[J]. Construction and Building Materials, 2018, 189: 338- 351
doi: 10.1016/j.conbuildmat.2018.08.133
17 CHEN J S, HUANG B S, SHU X Air-void distribution analysis of asphalt mixture using discrete element method[J]. Journal of Materials in Civil Engineering, 2012, 25 (10): 1375- 1385
18 CHEN J S, HUANG B S, SHU X, et al DEM simulation of laboratory compaction of asphalt mixtures using an open source code[J]. Journal of Materials in Civil Engineering, 2015, 27 (3): 04014130
doi: 10.1061/(ASCE)MT.1943-5533.0001069
19 ZHOU X D, CHEN S Y, GE D D, et al Investigation of asphalt mixture internal structure consistency in accelerated discrete element models[J]. Construction and Building Materials, 2020, 244: 118272
doi: 10.1016/j.conbuildmat.2020.118272
20 POTYONDY D O The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions[J]. Geosystem Engineering, 2015, 18 (1): 1- 28
doi: 10.1080/12269328.2014.998346
21 BEK L, KOTTNER R, LAS V Material model for simulation of progressive damage of composite materials using 3D Puck failure criterion[J]. Composite Structures, 2021, 259: 113435
doi: 10.1016/j.compstruct.2020.113435
22 CUNDALL P A, STRACK O D L A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29 (1): 47- 65
doi: 10.1680/geot.1979.29.1.47
23 WANG X M, XIAO Y J, SHI W B, et al Research on meso-scale deformation and failure mechanism of fractured rock mass subject to biaxial compression[J]. Arabian Journal of Geosciences, 2021, 14: 1390
doi: 10.1007/s12517-021-07769-x
24 SHI C, YANG W K, YANG J X, et al Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter, 2019, 21: 38
doi: 10.1007/s10035-019-0889-3
25 阿比尔的, 郑颖人, 冯夏庭, 等 平行黏结模型宏细观力学参数相关性研究[J]. 岩土力学, 2018, 39 (4): 1289- 1301
ABI Erdi, ZHEN Ying-ren, FENG Xia-ting, et al Relationship between particle micro and macro mechanical parameters of parallel-bond model[J]. Rock and Soil Mechanics, 2018, 39 (4): 1289- 1301
26 WANG X M, XIAO Y J, SHI W B, et al Forensic analysis and numerical simulation of a catastrophic landslide of dissolved and fractured rock slope subject to underground mining[J]. Landslides, 2022, 19: 1045- 1067
doi: 10.1007/s10346-021-01842-y
[1] 董辉, 伍开松, 况雨春, 代茂林. 基于DEM-CFD水力旋流器的水合物浆体分离规律研究[J]. 浙江大学学报(工学版), 2018, 52(9): 1811-1820.
[2] 谭超, 魏正英, 胡福胜, 李本强, 韩志海. 等离子喷涂过程数值计算与实验研究[J]. 浙江大学学报(工学版), 2014, 48(12): 2284-2292.