Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1055-1061    DOI: 10.3785/j.issn.1008-973X.2022.06.001
智能机器人     
基于图卷积模仿学习的分布式群集控制
郭策(),曾志文*(),朱鹏铭,周智千,卢惠民
国防科技大学 智能科学学院,湖南 长沙 410073
Decentralized swarm control based on graph convolutional imitation learning
Ce GUO(),Zhi-wen ZENG*(),Peng-ming ZHU,Zhi-qian ZHOU,Hui-min LU
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
 全文: PDF(894 KB)   HTML
摘要:

针对受限通信条件下机器人群集协同控制问题,提出基于图卷积模仿学习的分布式群集控制策略. 该策略旨在实现群集内避障、速度一致性的基础上,提高群集鲁棒性,提升避免群集分裂的成功率. 提出基于熵评价的群集鲁棒性量化评价指标,建立节点和链路重要性的均衡分布与群集鲁棒性的联系. 提出重要度相关图卷积网络,用于实现受限通信条件下非欧氏数据的特征提取和加权聚合. 采用图卷积模仿学习方法,根据提升群集鲁棒性的要求设计集中式专家策略,通过对集中式专家策略的模仿,得到分布式群集协同控制策略. 设计仿真实验,证明所得的分布式策略基于受限通信条件实现了接近集中式的专家策略的控制效果.

关键词: 机器人群集图卷积网络模仿学习鲁棒性图重要度熵    
Abstract:

A distributed swarm control strategy based on graph convolutional imitation learning was proposed to deal with the cooperative control of robot swarms under restricted communication conditions. The strategy aimed to improve swarm robustness and enhance the success rate of avoiding swarm splitting based on achieving intra-swarm obstacle avoidance and velocity consistency. A quantitative evaluation index of swarm robustness based on entropy evaluation was proposed to establish the connection between the balanced distribution of node and link importance and cluster robustness. The importance-correlated graph convolutional networks were proposed to realize feature extraction and weighted aggregation of non-Euclidean data under restricted communication conditions. A centralized expert strategy was designed to improve swarm robustness, and the graph convolutional imitation learning method was adopted. Furthermore, a distributed swarm cooperative control strategy was obtained by imitating the centralized expert strategy. Simulation experiments demonstrate that the resulting distributed strategy achieves control effects close to those of the centralized expert strategy based on restricted communication conditions.

Key words: robot swarm    graph convolutional network    imitation learning    robustness    graph importance entropy
收稿日期: 2022-02-27 出版日期: 2022-06-30
CLC:  TP 242.6  
基金资助: 国家自然科学基金资助项目(U1913202, U1813205)
通讯作者: 曾志文     E-mail: guoce1997@foxmail.com;z7z7w7@126.com
作者简介: 郭策(1997—),男,博士生,从事智能机器人技术研究. orcid.org/0000-0002-4472-4604. E-mail: guoce1997@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郭策
曾志文
朱鹏铭
周智千
卢惠民

引用本文:

郭策,曾志文,朱鹏铭,周智千,卢惠民. 基于图卷积模仿学习的分布式群集控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1055-1061.

Ce GUO,Zhi-wen ZENG,Peng-ming ZHU,Zhi-qian ZHOU,Hui-min LU. Decentralized swarm control based on graph convolutional imitation learning. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1055-1061.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.001        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1055

图 1  重要度相关图卷积网络模仿学习框架
图 2  重要度相关图卷积网络结构
群集控制策略 $ \stackrel{-}{\sigma } $ $ \stackrel{-}{{E}_{\mathrm{G}}} $ Acc
集中式专家策略 ?52.878 1.891 1.000
IGCNs ?126.183 1.876 0.910
DAGNNs ?225.831 1.669 0.755
分布式专家策略 ?1199.251 1.215 0.080
表 1  群集控制策略量化评价
图 3  不同策略控制下的机器人群集初始和稳定形态
图 4  选取的测试回合中单步量化评价指标变化情况
1 GARATTONI L, BIRATTARI M Autonomous task sequencing in a robot swarm[J]. Science Robotics, 2018, 3 (20): eaat0430
doi: 10.1126/scirobotics.aat0430
2 VÁSÁRHELYI G, VIRÁGH C, SOMORIAI G, et al Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3 (20): eaat3536
doi: 10.1126/scirobotics.aat3536
3 KHALDI B, HARROU F, CHERIF F, et al Self organization in aggregating robot swarms: a DW-KNN topological approach[J]. Biosystems, 2018, 165: 106- 121
doi: 10.1016/j.biosystems.2018.01.005
4 YAN L, STOURAITIS T, VIJAYKUMAR S Decentralized ability-aware adaptive control for multi-robot collaborative manipulation[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 2311- 2318
doi: 10.1109/LRA.2021.3060379
5 ZHOU L, TOKEKAR P Multi-robot coordination and planning in uncertain and adversarial environments[J]. Current Robotics Reports, 2021, 2 (2): 147- 157
doi: 10.1007/s43154-021-00046-5
6 ZHOU Z, YAO W, MA J, et al. Simatch: a simulation system for highly dynamic confrontations between multi-robot systems [C]// 2018 Chinese Automation Congress. Xi’an: IEEE, 2018: 3934-3939.
7 REYNOLDS C W. Flocks, herds and schools: a distributed behavioral model [C]// Proceedings of the 14th annual conference on Computer graphics and interactive techniques. New York: Association for Computing Machinery, 1987: 25-34.
8 PROROK A, KUMAR V. Privacy-preserving vehicle assignment for mobility-on-demand systems [C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 1869-1876.
9 ZHENG H, PANERATI J, BELTRAME G, et al An adversarial approach to private flocking in mobile robot teams[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 1009- 1016
doi: 10.1109/LRA.2020.2967331
10 LI L, BAYUELO A, BOBADILLA L, et al. Coordinated multi-robot planning while preserving individual privacy [C]// 2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 2188-2194.
11 LI Q, GAMA F, RIBEIRO A, et al. Graph neural networks for decentralized multi-robot path planning [C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 11785-11792.
12 TOLSTAYA E, GAMA F, PAULOS J, et al. Learning decentralized controllers for robot swarms with graph neural networks [C]// Conference on robot learning. Osaka: PMLR. 2020: 671-682.
13 ZHU P, DAI W, YAO W, et al Multi-robot flocking control based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 150397- 150406
doi: 10.1109/ACCESS.2020.3016951
14 WANG Z, GOMBOLAY M Learning scheduling policies for multi-robot coordination with graph attention networks[J]. IEEE Robotics and Automation Letters, 2020, 5 (3): 4509- 4516
doi: 10.1109/LRA.2020.3002198
15 HU T K, GAMA F, CHEN T, et al. VGAI: end-to-end learning of vision-based decentralized controllers for robot swarms [C]// ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 4900-4904.
16 GAMA F, TOLSTAYA E, RIBEIRO A. Graph neural networks for decentralized controllers [C]// ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 5260-5264.
17 WANG Z, LIU C, GOMBOLAY M Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints[J]. Autonomous Robots, 2022, 46 (1): 249- 268
doi: 10.1007/s10514-021-09997-2
18 JIANG Y, HU A, HE M. Evaluation method for the network reliability based on the entropy measures [C]// 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing. Wuhan: IEEE, 2009, 2: 423-426.
19 TANNER H G, JADBABAIE A, PAPPAS G J. Stable flocking of mobile agents, part I: fixed topology [C]// 42nd IEEE International Conference on Decision and Control. Maui: IEEE, 2003, 2: 2010-2015.
[1] 陈小波,陈玲,梁书荣,胡煜. 重尾非高斯定位噪声下鲁棒协同目标跟踪[J]. 浙江大学学报(工学版), 2022, 56(5): 967-976.
[2] 王友卫,童爽,凤丽洲,朱建明,李洋,陈福. 基于图卷积网络的归纳式微博谣言检测新方法[J]. 浙江大学学报(工学版), 2022, 56(5): 956-966.
[3] 王婷,朱小飞,唐顾. 基于知识增强的图卷积神经网络的文本分类[J]. 浙江大学学报(工学版), 2022, 56(2): 322-328.
[4] 汤自林,高霄,肖晓晖. 基于模仿学习的变刚度人机协作搬运控制[J]. 浙江大学学报(工学版), 2021, 55(11): 2091-2099.
[5] 沈麒,赵琰,周晓炜,袁晓冉. 结合结构与梯度的图像哈希算法[J]. 浙江大学学报(工学版), 2020, 54(8): 1525-1533.
[6] 隋昊,覃高峰,崔祥波,陆新江. 基于误差均值与方差最小化的鲁棒T-S模糊建模方法[J]. 浙江大学学报(工学版), 2019, 53(2): 382-387.
[7] 陈思,蔡晓东,侯珍珍,李波. 基于非均匀邻居节点采样的聚合式图嵌入方法[J]. 浙江大学学报(工学版), 2019, 53(11): 2163-2167.
[8] 杨春宁, 方家为, 李春, 葛晖. 基于稳定性判据的高超声速复合控制方法[J]. 浙江大学学报(工学版), 2017, 51(2): 422-428.
[9] 李滔, 王士同. 增量式0阶TSK模糊分类器及鲁棒改进[J]. 浙江大学学报(工学版), 2017, 51(10): 1901-1911.
[10] 杨慧琳, 黄智刚, 刘久文, 杜元锋. 基于核模糊C均值指纹库管理的WIFI室内定位方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1126-1133.
[11] 赵婵媛, 陆志强, 崔维伟. 考虑随机故障的流水线调度问题前摄优化方法[J]. 浙江大学学报(工学版), 2016, 50(4): 641-649.
[12] 朱光明, 蒋荣欣, 周凡, 田翔, 陈耀武. 带测量偏置估计的鲁棒卡尔曼滤波算法[J]. 浙江大学学报(工学版), 2015, 49(7): 1343-1349.
[13] 马腾, 赵兴忠, 高博青, 吴慧. 自由曲面形状和拓扑联合优化研究[J]. 浙江大学学报(工学版), 2015, 49(10): 1946-1951.
[14] 张成,李志安,高博青,董石麟. 基于H∞理论的网壳结构鲁棒性分析[J]. J4, 2013, 47(5): 818-823.
[15] 单艳玲, 高博青. 基于连续体拓扑优化的网壳结构鲁棒构型分析[J]. J4, 2013, 47(12): 2118-2124.