浙江大学学报(工学版)  2021, Vol. 55 Issue (6): 1108-1117    DOI: 10.3785/j.issn.1008-973X.2021.06.011
 交通工程、土木工程

Solving data length limit of all-phase technology by AR model
Xiang-yu GAO(),Yang-long LI()
Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
 全文: PDF(1878 KB)   HTML

Abstract:

A data extrapolation method (AREX) based on autoregressive (AR) model was proposed aiming at the limitation of data length in all-phase technology in the field of building structure. An algorithm for determining the order of AR model suitable for all-phase technology was given. An algorithm based on the principle of energy concentration criterion (ECC) was proposed to determine the order of AR model . The algorithm was compared with the final prediction error (FPE), Akaike's information criterion (AIC), Bayesian information criterion (BIC) and difference spectrum theory of singular value (SVD). Results showed that ECC algorithm was more suitable for AREX method. The original signal and the estimation signal by AREX method and the other expansion method were processed in all-phase technology. Results showed that the similarity of the waveform and spectrum of the AREX estimated signal was better than that of other methods. AREX was applied to the all-phase data processing of actual finite element and shaking table test signals in the field of building structure. Results show that the AREX estimation signal can basically be equivalent to results of the original signal, indicating that AREX can solve the limitation of all-phase data length.

Key words: all-phase technology    data expansion    autoregressive model    order determination    frequency analysis

 CLC: TU 317

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 高向宇 李杨龙

#### 引用本文:

Xiang-yu GAO,Yang-long LI. Solving data length limit of all-phase technology by AR model. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1108-1117.

#### 链接本文:

 表 1  构造参数取值 图 1  不同定阶准则下的AREX扩展数据波形图 图 2  不同定阶准则下AREX扩展数据apFFT幅值谱 图 3  不同定阶方法AREX波形相关系数 表 2  不同定阶方法apFFT频率识别正确率 图 4  最优阶数分布规律与SNR的关系 图 5  ECC阶数分布规律与SNR的关系 图 6  不同扩展方法的全相位波形 图 7  不同扩展方法的apFFT幅值谱 图 8  不同扩展方法全相位波形相关系数 表 3  不同扩展方法apFFT频率识别正确率 图 9  工业厂房结构的有限元模型 图 10  结构自由衰减信号 图 11  自由衰减信号apFFT分析结果对比图 图 12  振动台结构试验模型 图 13  振动台结构白噪声试验信号 图 14  振动台信号apFFT分析结果的对比图
 1 侯正信, 王兆华, 杨喜 全相位DFT数字滤波器的设计与实现[J]. 电子学报, 2003, 31 (4): 539- 543 HOU Zheng-xin, WANG Zhao-hua, YANG Xi Design and implementation of all phase DFT digital filter[J]. Acta Electronica Sinica, 2003, 31 (4): 539- 543 doi: 10.3321/j.issn:0372-2112.2003.04.014 2 BU Z, CHANG X, ZHENG Z, et al. High-precision time interval measurement based on triggerable ring oscillators and all-phase FFT algorithm[C]// 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum. Orlando: IEEE, 2019: 1-2. 3 孙曙光, 田朋, 杜太行, 等 基于apFFT-AMD的密集频率谐波/间谐波检测[J]. 浙江大学学报: 工学版, 2020, 54 (1): 178- 188 SUN Shu-guang, TIAN Peng, DU Tai-hang, et al Dense frequency harmonic/interharmonic detection based on apFFT-AMD[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (1): 178- 188 4 PAN Y, ZHANG T, ZHANG G, et al A novel acquisition algorithm based on PMF-apFFT for BOC modulated signals[J]. IEEE Access, 2019, 7: 46686- 46694 doi: 10.1109/ACCESS.2019.2909787 5 LIU S, LYU N, CUI J, et al Improved blind timing skew estimation based on spectrum sparsity and ApFFT in time-interleaved ADCs[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (1): 73- 86 doi: 10.1109/TIM.2018.2834080 6 NGAMKHANONG C, KAEWUNRUEN S The effect of ground borne vibrations from high speed train on overhead line equipment (OHLE) structure considering soil-structure interaction[J]. Science of the Total Environment, 2018, 627: 934- 941 doi: 10.1016/j.scitotenv.2018.01.298 7 PAZZI V, LOTTI A, CHIARA P, et al Monitoring of the vibration induced on the arno masonry embankment wall by the conservation works after the May 25, 2016 Riverbank Landslide[J]. Geoenvironmental Disasters, 2017, 4 (1): 6 doi: 10.1186/s40677-017-0072-2 8 LIN X, KATO M, ZHANG L, et al Quantitative investigation on collapse margin of steel high-rise buildings subjected to extremely severe earthquakes[J]. Earthquake Engineering and Engineering Vibration, 2018, 17 (3): 445- 457 doi: 10.1007/s11803-018-0454-9 9 SACCHI M D, VELIS D R, COMÍNGUEZ A H Minimum entropy deconvolution with frequency-domain constraints[J]. Geophysics, 1994, 59 (6): 938- 945 doi: 10.1190/1.1443653 10 WU Z Z, LI Y D, CHANG T Uniqueness theorems and algorithm for discrete signal reconstruction from its autocorrelation function and one sample[J]. Science in China Series A-Mathematics, Physics, Astronomy and Technological Science, 1989, 32 (5): 607- 618 11 蔡正辉, 刘怀山, 黄云笛, 等. 地震信号的最小相位重构研究[C]// 第11届国家安全地球物理专题研讨会. 西安: 中国学术期刊电子出版社, 2015: 317–321.CAI Zheng-hui, LIU Huai-shan, HUANG Yun-di, et al. Reconstruction of minimum phase from seismic data[C]// The 11th National Security Geophysics Symposium. Xi'an: China Academic Journal Electronic Publishing House, 2015: 317–321. 12 NGUYEN V K, TURLEY M D E, FABRIZIO G A A new data extrapolation approach based on spectral partitioning[J]. IEEE Signal Processing Letters, 2016, 23 (4): 454- 458 doi: 10.1109/LSP.2016.2533602 13 ZHOU J, ZHU Z, SHU Y, et al Extrapolation of RF echo data based on AR modeling[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 16 (2): 193- 199 14 沈慧芳, 李民生, 罗丰 基于递推算法的严格最大熵谱估计[J]. 雷达科学与技术, 2008, 6 (4): 288- 291 SHEN Hui-fang, LI Min-sheng, LUO Feng Strict maximum entropy spectral estimation based on recursive algorithm[J]. Radar Science and Technology, 2008, 6 (4): 288- 291 doi: 10.3969/j.issn.1672-2337.2008.04.011 15 JIANG Y, HUANG Y, YE X. A new singular value decomposition method for AR model order selection via vibration signal analysis[C]// 6th International Conference on Fuzzy Systems and Knowledge Discovery. Tianjin: IEEE, 2009: 567–572. 16 张景润, 李伟光, 李振, 等 基于奇异值差分谱理论的大型转子轴心轨迹提纯[J]. 振动与冲击, 2019, 38 (4): 199- 205 ZHANG Jing-run, LI Wei-guang, LI Zhen, et al Purification for a large rotor axis's orbit based on the difference spectrum theory of singular value[J]. Journal of Vibration and Shock, 2019, 38 (4): 199- 205 17 高向宇, 李建勤, 刘超, 等 钢支撑-混凝土框架动力非弹性扭转机理与抗扭设计研究[J]. 建筑结构学报, 2018, 39 (2): 44- 53 GAO Xiang-yu, LI Jian-qin, LIU Chao, et al Mechanism of dynamic inelastic torsion and anti-torsional design strategy of steel-braced concrete frames[J]. Journal of Building Structures, 2018, 39 (2): 44- 53
 [1] 何慧梅, 侯迪波, 赵海峰, 黄平捷, 张光新. 基于多因子融合的水质异常检测算法[J]. J4, 2013, 47(4): 735-740. [2] 许月萍 李佳 曹飞凤 冉启华. 在水文极限事件分析中的应用[J]. J4, 2008, 42(7): 1119-1122.