Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (6): 1108-1117    DOI: 10.3785/j.issn.1008-973X.2021.06.011
北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124
Solving data length limit of all-phase technology by AR model
Xiang-yu GAO(),Yang-long LI()
Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
 全文: PDF(1878 KB)   HTML

针对在建筑结构领域全相位技术中对数据长度的限制问题,提出使用基于自回归(AR)模型的数据外推方法(AREX),给出适用于全相位技术的AR模型定阶算法. 提出以有效频段最大能量集中为原则确定AR模型阶数的算法(ECC),与最终预测误差(FPE)、阿凯克信息准则(AIC)、贝叶斯信息准则(BIC)及奇异值差分谱准则(SVD)进行对比. 结果表明,ECC算法更适合AREX方法. 将原始信号及AREX方法与常见数据扩展方法的估计信号进行全相位处理,结果表明,AREX估计信号的波形和频谱的相似程度均优于其余方法. 将AREX方法用于建筑结构有限元分析数据和振动台试验信号的全相位数据处理,结果表明,AREX估计信号基本上可以等效原始信号结果,表明AREX可以解决全相位数据长度的限制问题.

关键词: 全相位技术数据扩展自回归模型定阶准则频率分析    

A data extrapolation method (AREX) based on autoregressive (AR) model was proposed aiming at the limitation of data length in all-phase technology in the field of building structure. An algorithm for determining the order of AR model suitable for all-phase technology was given. An algorithm based on the principle of energy concentration criterion (ECC) was proposed to determine the order of AR model . The algorithm was compared with the final prediction error (FPE), Akaike's information criterion (AIC), Bayesian information criterion (BIC) and difference spectrum theory of singular value (SVD). Results showed that ECC algorithm was more suitable for AREX method. The original signal and the estimation signal by AREX method and the other expansion method were processed in all-phase technology. Results showed that the similarity of the waveform and spectrum of the AREX estimated signal was better than that of other methods. AREX was applied to the all-phase data processing of actual finite element and shaking table test signals in the field of building structure. Results show that the AREX estimation signal can basically be equivalent to results of the original signal, indicating that AREX can solve the limitation of all-phase data length.

Key words: all-phase technology    data expansion    autoregressive model    order determination    frequency analysis
收稿日期: 2020-05-25 出版日期: 2021-07-30
CLC:  TU 317  
基金资助: 北京市自然科学基金资助项目(8141001)
作者简介: 高向宇(1959—),男,教授,从事结构工程及防灾减灾与防护工程的研究. E-mail:
E-mail Alert


高向宇,李杨龙. 利用AR模型解决全相位技术数据长度限制[J]. 浙江大学学报(工学版), 2021, 55(6): 1108-1117.

Xiang-yu GAO,Yang-long LI. Solving data length limit of all-phase technology by AR model. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1108-1117.


参数 取值 参数 取值
A1 3 ${\phi _1}$ /rad ${\text{π}} /2$
A2 1 ${\phi _2}$ /rad ${\text{π}} /3$
A3 2 ${\phi _3}$ /rad ${\text{π}} /4$
f1 /Hz 12 fs /Hz 256
f2 /Hz 17 N 256
f3 /Hz 21 ? ?
表 1  构造参数取值
图 1  不同定阶准则下的AREX扩展数据波形图
图 2  不同定阶准则下AREX扩展数据apFFT幅值谱
图 3  不同定阶方法AREX波形相关系数
主频 Acc /%
1阶 85 35 93 77 78 76
2阶 77 19 84 69 71 69
3阶 100 93 100 96 96 96
表 2  不同定阶方法apFFT频率识别正确率
图 4  最优阶数分布规律与SNR的关系
图 5  ECC阶数分布规律与SNR的关系
图 6  不同扩展方法的全相位波形
图 7  不同扩展方法的apFFT幅值谱
图 8  不同扩展方法全相位波形相关系数
主频 Acc /%
1阶 100 100 88 94
2阶 83 56 6 85
3阶 42 54 19 95
表 3  不同扩展方法apFFT频率识别正确率
图 9  工业厂房结构的有限元模型
图 10  结构自由衰减信号
图 11  自由衰减信号apFFT分析结果对比图
图 12  振动台结构试验模型
图 13  振动台结构白噪声试验信号
图 14  振动台信号apFFT分析结果的对比图
1 侯正信, 王兆华, 杨喜 全相位DFT数字滤波器的设计与实现[J]. 电子学报, 2003, 31 (4): 539- 543
HOU Zheng-xin, WANG Zhao-hua, YANG Xi Design and implementation of all phase DFT digital filter[J]. Acta Electronica Sinica, 2003, 31 (4): 539- 543
doi: 10.3321/j.issn:0372-2112.2003.04.014
2 BU Z, CHANG X, ZHENG Z, et al. High-precision time interval measurement based on triggerable ring oscillators and all-phase FFT algorithm[C]// 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum. Orlando: IEEE, 2019: 1-2.
3 孙曙光, 田朋, 杜太行, 等 基于apFFT-AMD的密集频率谐波/间谐波检测[J]. 浙江大学学报: 工学版, 2020, 54 (1): 178- 188
SUN Shu-guang, TIAN Peng, DU Tai-hang, et al Dense frequency harmonic/interharmonic detection based on apFFT-AMD[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (1): 178- 188
4 PAN Y, ZHANG T, ZHANG G, et al A novel acquisition algorithm based on PMF-apFFT for BOC modulated signals[J]. IEEE Access, 2019, 7: 46686- 46694
doi: 10.1109/ACCESS.2019.2909787
5 LIU S, LYU N, CUI J, et al Improved blind timing skew estimation based on spectrum sparsity and ApFFT in time-interleaved ADCs[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (1): 73- 86
doi: 10.1109/TIM.2018.2834080
6 NGAMKHANONG C, KAEWUNRUEN S The effect of ground borne vibrations from high speed train on overhead line equipment (OHLE) structure considering soil-structure interaction[J]. Science of the Total Environment, 2018, 627: 934- 941
doi: 10.1016/j.scitotenv.2018.01.298
7 PAZZI V, LOTTI A, CHIARA P, et al Monitoring of the vibration induced on the arno masonry embankment wall by the conservation works after the May 25, 2016 Riverbank Landslide[J]. Geoenvironmental Disasters, 2017, 4 (1): 6
doi: 10.1186/s40677-017-0072-2
8 LIN X, KATO M, ZHANG L, et al Quantitative investigation on collapse margin of steel high-rise buildings subjected to extremely severe earthquakes[J]. Earthquake Engineering and Engineering Vibration, 2018, 17 (3): 445- 457
doi: 10.1007/s11803-018-0454-9
9 SACCHI M D, VELIS D R, COMÍNGUEZ A H Minimum entropy deconvolution with frequency-domain constraints[J]. Geophysics, 1994, 59 (6): 938- 945
doi: 10.1190/1.1443653
10 WU Z Z, LI Y D, CHANG T Uniqueness theorems and algorithm for discrete signal reconstruction from its autocorrelation function and one sample[J]. Science in China Series A-Mathematics, Physics, Astronomy and Technological Science, 1989, 32 (5): 607- 618
11 蔡正辉, 刘怀山, 黄云笛, 等. 地震信号的最小相位重构研究[C]// 第11届国家安全地球物理专题研讨会. 西安: 中国学术期刊电子出版社, 2015: 317–321.
CAI Zheng-hui, LIU Huai-shan, HUANG Yun-di, et al. Reconstruction of minimum phase from seismic data[C]// The 11th National Security Geophysics Symposium. Xi'an: China Academic Journal Electronic Publishing House, 2015: 317–321.
12 NGUYEN V K, TURLEY M D E, FABRIZIO G A A new data extrapolation approach based on spectral partitioning[J]. IEEE Signal Processing Letters, 2016, 23 (4): 454- 458
doi: 10.1109/LSP.2016.2533602
13 ZHOU J, ZHU Z, SHU Y, et al Extrapolation of RF echo data based on AR modeling[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 16 (2): 193- 199
14 沈慧芳, 李民生, 罗丰 基于递推算法的严格最大熵谱估计[J]. 雷达科学与技术, 2008, 6 (4): 288- 291
SHEN Hui-fang, LI Min-sheng, LUO Feng Strict maximum entropy spectral estimation based on recursive algorithm[J]. Radar Science and Technology, 2008, 6 (4): 288- 291
doi: 10.3969/j.issn.1672-2337.2008.04.011
15 JIANG Y, HUANG Y, YE X. A new singular value decomposition method for AR model order selection via vibration signal analysis[C]// 6th International Conference on Fuzzy Systems and Knowledge Discovery. Tianjin: IEEE, 2009: 567–572.
16 张景润, 李伟光, 李振, 等 基于奇异值差分谱理论的大型转子轴心轨迹提纯[J]. 振动与冲击, 2019, 38 (4): 199- 205
ZHANG Jing-run, LI Wei-guang, LI Zhen, et al Purification for a large rotor axis's orbit based on the difference spectrum theory of singular value[J]. Journal of Vibration and Shock, 2019, 38 (4): 199- 205
17 高向宇, 李建勤, 刘超, 等 钢支撑-混凝土框架动力非弹性扭转机理与抗扭设计研究[J]. 建筑结构学报, 2018, 39 (2): 44- 53
GAO Xiang-yu, LI Jian-qin, LIU Chao, et al Mechanism of dynamic inelastic torsion and anti-torsional design strategy of steel-braced concrete frames[J]. Journal of Building Structures, 2018, 39 (2): 44- 53
[1] 何慧梅, 侯迪波, 赵海峰, 黄平捷, 张光新. 基于多因子融合的水质异常检测算法[J]. J4, 2013, 47(4): 735-740.
[2] 许月萍 李佳 曹飞凤 冉启华. 在水文极限事件分析中的应用[J]. J4, 2008, 42(7): 1119-1122.