Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1335-1340    DOI: 10.3785/j.issn.1008-973X.2020.07.011
机械与能源工程     
芯片键合纵弯复合超声换能器的设计与试验
胡广豪1(),薛进学1,马文举1,隆志力2,*()
1. 河南科技大学 机械工程学院,河南 洛阳 471003
2. 哈尔滨工业大学(深圳) 机电工程与自动化学院,广东 深圳 518055
Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding
Guang-hao HU1(),Jin-xue XUE1,Wen-ju MA1,Zhi-li LONG2,*()
1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China
2. School of Mechatronics Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
 全文: PDF(1388 KB)   HTML
摘要:

为了解决当前采用一维纵向超声加载模式进行芯片键合时造成结合面不充分的问题,设计纵弯复合超声能量加载模式的压电超声换能器,实现轴向纵振和水平弯振复合的超声振动代替传统单一的轴向振动. 采用ANSYS软件,对换能器有限元模型进行模态分析和谐响应分析,得到换能器纵振和弯振模态的谐振频率及振型. 通过调节换能器结构尺寸,实现纵振与弯振模态的简并. 采用阻抗分析仪对样机的频率和阻抗进行测试,使用激光多普勒测振仪测试换能器的纵振与弯振幅值,测试结果与有限元仿真计算结果一致,发现纵向与弯曲振幅均随着驱动电压的增加呈近似线性上升趋势, 证明设计的压电换能器实现了纵弯复合振动.

关键词: 超声换能器纵弯复合振动模态分析谐响应分析芯片键合    
Abstract:

A piezoelectric transducer with longitudinal-flexural composite ultrasonic mode was developed in order to solve the problem that the ultrasonic energy with one-dimensional longitudinal mode causes insufficient bonding area during chip bonding. The transducer can generate composite ultrasonic vibration to replace the conventional longitudinal vibration. The finite element simulation by ANSYS Workbench was employed to conduct the modal analysis and harmonic response analysis of transducer. The resonant frequency and mode shape of the longitudinal and flexural modes were obtained. The longitudinal and the flexural vibration modes were degenerated by adjusting the size of the transducer structure. The frequency and impedance testing of the prototype were conducted by impedance analyzer. The longitudinal and flexural amplitude of the transducer were measured by laser Doppler vibrometer. The experimental results accorded with the finite element calculation. The amplitude of the longitudinal and flexural vibration showed an upward tendency with the increasing of driving voltage. Results prove that the designed transducer can achieve the longitudinal-flexural composite vibration.

Key words: ultrasonic transducer    longitudinal-flexural composite vibration    modal analysis    harmonic response analysis    chip bonding
收稿日期: 2019-07-03 出版日期: 2020-07-05
CLC:  TB 552  
基金资助: 国家自然科学基金资助项目(U1713206);深圳市学科布局基础研究资助项目(JCYJ20170413112645981,JCYJ20150928162432701)
通讯作者: 隆志力     E-mail: 632944546@qq.com;longzhili@hit.edu.cn
作者简介: 胡广豪(1995—),男,硕士生,从事芯片键合换能器设计的研究. orcid.org/0000-0002-7452-1170. E-mail: 632944546@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡广豪
薛进学
马文举
隆志力

引用本文:

胡广豪,薛进学,马文举,隆志力. 芯片键合纵弯复合超声换能器的设计与试验[J]. 浙江大学学报(工学版), 2020, 54(7): 1335-1340.

Guang-hao HU,Jin-xue XUE,Wen-ju MA,Zhi-li LONG. Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1335-1340.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.011        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1335

图 1  纵弯换能器的结构示意图
图 2  纵向超声换能器的结构示意图
Ls L1 L2 L3 D1 D2
10 9 18 30 13.5 8
表 1  纵向超声换能器的结构参数
组成部分 材料 ρ/(kg·m?3 E/(1011N·m?2 μ
后盖板变幅杆安装环 316不锈钢 7 800 2.06 0.29
劈刀 钨钢 4 000 3.13 0.27
预紧螺钉 45钢 7 850 2.05 0.30
表 2  换能器各部件材料特性参数
图 3)  纵向振动模态
图 4  弯曲振动模态
图 5  纵振模态位移振型
图 6  弯振模态位移振型
图 7  纵向和弯曲振动模态位移振型
图 8  谐响应分析时振幅随频率的变化曲线
图 9  纵弯换能器实物图
图 10  纵弯换能器的频率特性曲线
图 11  纵弯换能器的振动测试平台
图 12  纵弯换能器振幅曲线
图 13  振幅与驱动电压的关系
1 韩雷, 王福亮, 隆志力, 等. 微电子封装超声键合机理与技术[M]. 北京: 科学出版社, 2014.
2 田艳红, 孔令超, 王春青 芯片互连超声键合技术连接机制探讨[J]. 电子工艺技术, 2017, 28 (1): 1- 9
TIAN Yan-hong, KONG Ling-chao, WANG Chun-qing Discussion on the connection mechanism of ultrasonic bonding technology for chip interconnection[J]. Electronic Technology, 2017, 28 (1): 1- 9
3 刘丽君, 赵修臣, 李红, 等 热超声金丝键合工艺及其可靠性研究[J]. 新技术新工艺, 2018, 7 (3): 27- 31
LIU Li-jun, ZHAO Xiu-chen, LI Hong, et al Research on thermosonic gold chip bonding technology and reliability[J]. New Technology and New Process, 2018, 7 (3): 27- 31
4 计红军, 李明雨, 王春青 超声芯片键合点形态及界面金属学特征[J]. 电子工艺技术, 2005, 38 (5): 249- 253
JI Hong-jun, LI Ming-yu, WANG Chun-qing Morphology of bonding points and interface metallography of ultrasonic leads[J]. Electronic Technology, 2005, 38 (5): 249- 253
doi: 10.3969/j.issn.1001-3474.2005.05.001
5 PAUL C W, LI H L, CHAN H L, et al Smart ultrasonic transducer for chip-bonding applications[J]. Materials Chemistry and Physics, 2002, 75 (1): 95- 100
6 TSUJINO J, SANO T, HAYATO O, et al Complex vibration ultrasonic welding systems with large area welding tips[J]. Ultrasonics, 2002, 40 (1): 361- 364
7 LEUNG M L H, LAI-WAH H C, CHOU-KEE P L. Comparison of bonding defects for longitudinal and transverse thermosonic flip-chip [C]//2003 Electronics Packaging Technology Conference. Singapore: IEEE, 2003: 350-355.
8 李庆良, 叶玟鋑, 关家胜, 等. 具有改良刚度的带凸缘的换能器: 200710187837.1 [P]. 2008-05-28.
9 吴霄, 秦慧斌, 付俊帆, 等 大负载纵弯谐振变幅器谐振特性的研究与试验[J]. 机械设计与制造, 2018, 24 (7): 83- 86
WU Xiao, QIN Hui-bin, FU Jun-fan, et al Research and test of resonance characteristics of large load longitudinal and flexural resonant amplitude transformer[J]. Mechanical Design and Manufacturing, 2018, 24 (7): 83- 86
doi: 10.3969/j.issn.1001-3997.2018.07.024
10 LIU Ying-xiang, SHEN Qiang-qiang, SHI Shen-jun, et al Research on a novel exciting method for sandwich transducer operating in longitudinal-flexural hybrid modes[J]. Sensors, 2017, 17 (7): 1510
doi: 10.3390/s17071510
11 赵淳生. 超声波电机技术与应用[M]. 北京: 科学出版社, 2007.
12 MELCHOR J, RUS G Torsional ultrasonic transducer computational design optimization[J]. Ultrasonics, 2014, 54 (7): 1950- 1962
doi: 10.1016/j.ultras.2014.05.001
13 OR S W. High frequency transducer for ultrasonic bonding [D]. Hong Kong: The Hong Kong Polytechnic University, 2001.
14 林书玉 夹心式弯曲振动压电超声换能器的研究[J]. 声学技术, 1993, 5 (4): 26- 30
LIN Shu-yu Study on piezoeleetric ceramic sandwiched transducers of ultrasonic flexural vibration[J]. Technical Acoustics, 1993, 5 (4): 26- 30
15 王福军, 赵兴玉, 张大卫 热超声键合压电换能器的动力学特性[J]. 焊接学报, 2008, 22 (10): 69- 72
WANG Fu-jun, ZHAO Xing-yu, ZHANG Da-wei Dynamic characteristics of thermosonic bonded piezoelectric transducer[J]. Transactions of the China Welding Institution, 2008, 22 (10): 69- 72
doi: 10.3321/j.issn:0253-360X.2008.10.018
16 隆志力. 芯片键合换能系统动力学特性与优化设计研究[D]. 长沙: 中南大学, 2007.
LONG Zhi-li. Research on dynamic characteristics and optimization design of ultrasonic transducer system in IC bonding [D]. Changsha: Central South University, 2007.
[1] 王进,王向坤,扶建辉,陆国栋,金超超,陈燕智. 重载机器人横梁结构静动态特性分析与优化[J]. 浙江大学学报(工学版), 2021, 55(1): 124-134.
[2] 李阳健,何伟,刘宏伟,李伟,林勇刚,顾亚京. 水平轴海流能机组传动链主动阻尼控制技术[J]. 浙江大学学报(工学版), 2020, 54(7): 1355-1361.
[3] 刘蕴, 董冠华, 殷国富. 非接触密封失稳振动分析与结构优化[J]. 浙江大学学报(工学版), 2018, 52(7): 1390-1397.
[4] 关富玲,戴璐. 双环可展桁架结构动力学分析与试验研究[J]. J4, 2012, 46(9): 1605-1610.
[5] 雷之力,艾欣,崔明勇,刘晓. 基于模态评估法的微网串联谐振仿真[J]. J4, 2011, 45(1): 178-184.
[6] 蒋刚, 何闻, 郑建毅. 高频振动时效的机理与实验研究[J]. J4, 2009, 43(7): 1269-1272.
[7] 胡彦超 陈章位. 应用实正交多项式的多模态辨识迭代算法[J]. J4, 2008, 42(9): 1563-1567.
[8] 荆龙江 项贻强. 基于柔度矩阵法的大跨斜拉桥主梁的损伤识别[J]. J4, 2008, 42(1): 164-169.
[9] 周迅 俞小莉. 曲轴疲劳裂纹扩展速率测量的扫频法[J]. J4, 2007, 41(11): 1886-1892.
[10] 沈润杰 何闻. 大型宽频带水下振动台流固耦合动力学特性的研究[J]. J4, 2006, 40(4): 724-728.