Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 124-134    DOI: 10.3785/j.issn.1008-973X.2021.01.015
机械工程     
重载机器人横梁结构静动态特性分析与优化
王进1(),王向坤1,扶建辉1,*(),陆国栋1,金超超2,陈燕智3
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 宁波伟立机器人科技股份有限公司,浙江 宁波 315480
3. 余姚市浙江大学机器人研究中心,浙江 宁波 315400
Static and dynamic characteristic analysis and structure optimization for crossbeam structure of heavy-duty truss robot
Jin WANG1(),Xiang-kun WANG1,Jian-hui FU1,*(),Guo-dong LU1,Chao-chao JIN2,Yan-zhi CHEN3
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Ningbo Welllih Robot Technology Limited Company, Ningbo 315480, China
3. Yuyao Zhejiang University Robot Research Center, Ningbo 315400, China
 全文: PDF(1826 KB)   HTML
摘要:

为了探究并改善重载桁架机器人横梁结构在承受极限负载压力下的静动态特性,利用有限元方法分析该结构的静动态特性并进行结构优化. 静态分析结果表明,横梁结构在承受极限负载17 800 N的压力下,横梁结构在Y方向上的最大变形量为0.470 mm. 动态分析结果表明,横梁结构的前6阶固有频率为47~134 Hz. 谐响应分析结果显示了前3阶固有频率对结构的影响. 优化结果表明,在中心复合设计(CCD)与最佳填充空间设计(OSF)2种不同实验设计方法下,OSF实验设计方法具有更好的优化效果. OSF实验设计优化后,横梁结构的质量降低了1.47%,总变形量降低了18.41%,频率降低了13.48%.

关键词: 重载桁架机器人横梁结构模态分析谐响应分析结构尺寸优化    
Abstract:

The finite element method was used to analyze the static and dynamic characteristics of the crossbeam structure of heavy-duty truss robot and optimize the structure in order to explore and improve the static and dynamic characteristics under extreme load pressure. The static analysis results showed that the maximum deformation of the crossbeam structure in the Y direction was 0.470 mm under the pressure of the limit load of 17800 N. The dynamic analysis results showed that the first six natural frequencies of the crossbeam structure were distributed from 47 to 134 Hz. Harmonic response analysis results showed the influence of the first three natural frequencies on the structure. The optimization results show that the experimental design method of OSF has better optimization effect under two different experimental design methods of CCD and OSF. The quality of the crossbeam structure was reduced by 1.47%, the total deformation was reduced by 18.41% and the frequency was reduced by 13.48% after the optimization of the OSF experimental design.

Key words: heavy-duty truss robot    crossbeam structure    modal analysis    harmonic response analysis    structural size optimization
收稿日期: 2020-06-29 出版日期: 2021-01-05
CLC:  TP 23  
基金资助: 浙江省重点研发计划资助项目(2020C01025);宁波市科技计划资助项目(2018B10010)
通讯作者: 扶建辉     E-mail: dwjcom@zju.edu.cn;jhf@zju.edu.cn
作者简介: 王进(1980—),男,副教授,从事机械设计及理论、CAD方法与技术、机器人技术与应用等研究.orcid.org/0000-0003-3106-021X. E-mail: dwjcom@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王进
王向坤
扶建辉
陆国栋
金超超
陈燕智

引用本文:

王进,王向坤,扶建辉,陆国栋,金超超,陈燕智. 重载机器人横梁结构静动态特性分析与优化[J]. 浙江大学学报(工学版), 2021, 55(1): 124-134.

Jin WANG,Xiang-kun WANG,Jian-hui FU,Guo-dong LU,Chao-chao JIN,Yan-zhi CHEN. Static and dynamic characteristic analysis and structure optimization for crossbeam structure of heavy-duty truss robot. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 124-134.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.015        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/124

图 1  重载机器人模型与横梁结构模型
结构 S/mm L/mm T/mm E/(1011 Pa) ρ/(kg·m?3)
横梁 400×400 7300 12 2 7850
滑轨 46×35 7280 ? 2 7850
齿条 39×35 7000 ? 2 7850
表 1  横梁、滑轨、齿条模型基本参数
图 2  横梁结构截面与网格划分结果
图 3  压力加载简化模型
单元 DA /mm σA /MPa DB/mm σB/MPa DC/mm σC /MPa Nd ta /s
实体单元 0.192 20.743 0.406 22.973 0.470 22.436 339488 310
壳单元 0.192 19.882 0.403 22.645 0.466 23.190 136448 202
表 2  实体单元与壳单元的仿真结果对比
图 4  横梁结构实体单元与壳单元变形云图
位置 Sb/mm Sa/mm DF/mm
位置A 0.249 0.236 0.013
位置B 0.528 0.509 0.019
位置C 0.586 0.581 0.005
表 3  横梁截面简化前、后的最大总变形量对比
图 5  横梁截面简化前、后对比与网格划分
图 6  两端固定梁理论力学模型
图 7  梁等效力学模型
位置 Dth/mm Ds/mm Der/mm
位置A 0.074 0.084 0.010
位置B 0.281 0.284 0.003
位置C 0.353 0.349 0.004
表 4  横梁结构理论变形量与仿真变形量结果对比
图 8  梁挠度最大处截面变形云图
阶数 f/Hz 阶数 f/Hz
1 47.713 6 133.860
2 49.495 7 171.090
3 109.290 8 173.640
4 117.900 9 176.920
5 121.220 10 177.690
表 5  横梁结构的前10阶固有频率
图 9  模型前6阶模态振型云图
图 10  结构水平面(上)与竖直面位置(下)
图 11  横梁结构的位移响应曲线
尺寸范围 P1 P2 P3 P4 P5 P6 P7
初始值 12 12 376 376 44 46 32
下限 9 9 280 280 35 40 25
上限 14 14 420 420 50 60 35
表 6  横梁截面尺寸参数变化范围
图 12  优化截面结构(左)与网格划分截面(右)
图 13  CCD和OSF设计样本点与响应点
评判参数 CCD OSF
f m d σ f m d σ
测定系数 0.999 1.000 0.999 1.000 0.999 1.000 1.000 0.999
最大相对残差 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000
均方根误差 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
相对均方根误差 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
相对最大
绝对误差
0.033 0.000 0.067 0.000 0.018 0.000 0.000 0.027
相对平均
绝对误差
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
表 7  CCD和OSF的拟合精度
图 14  横梁结构尺寸优化流程
图 15  CCD设计Pareto解集与OSF设计Pareto解集
mm
方案 P1 P2 P3 P4 P5 P6 P7
1 11.15 12.61 344.90 392.34 41.75 52.49 29.95
2 11.14 12.48 342.28 392.19 41.89 52.59 29.94
3 11.16 12.61 344.14 391.83 41.38 52.52 29.98
4 11.19 12.27 344.18 392.17 42.82 52.64 29.94
5 11.16 12.61 343.98 392.31 41.39 52.48 29.95
原始 12.00 12.00 376.00 376.00 44.00 46.00 32.00
表 8  CCD实验设计尺寸优化结果
mm
方案 P1 P2 P3 P4 P5 P6 P7
1 10.96 12.95 333.13 393.66 42.99 54.67 29.72
2 12.38 12.44 312.45 411.90 41.11 48.11 31.48
3 11.00 12.82 323.83 411.26 43.63 51.20 29.64
4 11.00 12.82 323.64 409.63 42.49 54.68 29.65
5 11.00 12.82 323.64 409.63 42.49 54.73 29.65
原始 12.00 12.00 376.00 376.00 44.00 46.00 32.00
表 9  OSF实验设计尺寸优化结果
方案 CCD OSF
f/Hz vf/% d/μm vd/% m/kg vm/% f/Hz vf/% d/μm vd/% m/kg vm/%
1 44.72 ?8.08 476.10 ?16.03 1234.70 ?0.11 42.45 ?12.74 458.56 ?19.13 1234.32 ?0.14
2 44.34 ?8.86 476.32 ?16.00 1225.20 ?0.87 41.13 ?15.46 459.67 ?18.93 1233.54 ?0.20
3 44.61 ?8.30 476.50 ?15.96 1232.71 ?0.27 42.09 ?13.48 462.59 ?18.41 1217.82 ?1.47
4 44.70 ?8.12 476.60 ?15.94 1227.28 ?0.71 41.74 ?14.20 463.84 ?18.20 1219.58 ?1.33
5 44.59 ?8.35 476.70 ?15.93 1231.95 ?0.33 41.74 ?14.20 464.20 ?18.13 1219.42 ?1.34
原始 48.65 0.00 567.00 0.00 1236.00 0.00 48.65 0.00 567.00 0.00 1236.00 0.00
表 10  CCD和OSF实验设计的频率、变形量与质量优化结果
图 16  CCD和OSF设计优化效果与原始模型对比
图 17  CCD实验设计与OSF实验设计优化结果对比
1 何敏, 田晓美 汽车制造业物流新技术的应用探索[J]. 物流技术与应用, 2019, 24 (9): 121- 122
HE Min, TIAN Xiao-mei Application of new logistics technologies in automobile manufacturing industry[J]. Logistics and Material Handling, 2019, 24 (9): 121- 122
doi: 10.3969/j.issn.1007-1059.2019.09.017
2 ZHU H B, WANG B, CHEN W. Dynamic performance analysis of truss robot based on RecurDyn and experimental research [C]//2016 Asia-Pacific Conference on Intelligent Robot Systems. Tokyo: IEEE, 2016: 31-35.
3 陈骏, 陈威 桁架机器人动态特性分析及实验研究[J]. 机械工程与自动化, 2018, (2): 86- 87
CHEN Jun, CHEN Wei Dynamic characteristics analysis and experimental research of truss robots[J]. Mechanical Engineering and Automation, 2018, (2): 86- 87
doi: 10.3969/j.issn.1672-6413.2018.02.033
4 TIAN D, DENG Z Q, LIU R Q, et al. Analysis on dynamic response of truss structure for deployable truss antenna [C]//9th World Congress on Intelligent Control and Automation. Taipei: IEEE, 2011: 1185-1188.
5 于锋钊, 赵明扬, 辛立明, 等 基于ANSYS的龙门式直角坐标机器人横梁分析[J]. 机械设计与制造, 2008, (5): 182- 183
YU Feng-zhao, ZHAO Ming-yang, XIN Li-ming, et al Analysis on beam of the portal-type cartesian-coordinate robot based on ANSYS[J]. Mechanical Design and Manufacturing, 2008, (5): 182- 183
doi: 10.3969/j.issn.1001-3997.2008.05.077
6 WU M Y, LIU Y J, CAI H G Dynamic analysis and optimization for Wafer handling robot[J]. Advanced Materials Research, 2014, 898: 657- 662
doi: 10.4028/www.scientific.net/AMR.898.657
7 吴志军, 冯平法, 郁鼎文, 等 典型数控龙门镗铣床主轴系统抗振性能优化[J]. 清华大学学报:自然科学版, 2010, 50 (7): 995- 999
WU Zhi-jun, FENG Ping-fa, YU Ding-wen, et al Optimization of the dynamic behavior of a spindle system for a CNC gantry-type boring and milling machine[J]. Journal of Tsinghua University: Natural Science Edition, 2010, 50 (7): 995- 999
8 于长亮, 张辉, 王仁彻, 等 机床整机动刚度薄弱环节辨识与优化方法研究[J]. 机械工程学报, 2013, 49 (21): 11- 17
YU Chang-liang, ZHANG Hui, WANG Ren-che, et al Study on method for weak link identification of dynamic stiffness of a machine tool and optimization design[J]. Journal of Mechanical Engineering, 2013, 49 (21): 11- 17
doi: 10.3901/JME.2013.21.011
9 童水光, 苗嘉智, 童哲铭, 等 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报:工学版, 2019, 53 (9): 1637- 1646
TONG Shui-guang, MIAO Jia-zhi, TONG Zhe-ming, et al Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (9): 1637- 1646
10 王彪. 桁架机器人耦合特性分析与结构优化[D]. 安徽: 合肥工业大学, 2017.
WANG Biao. Coupling characteristics analysis and structural optimization of truss robots [D]. Anhui: Hefei University of Technology, 2017.
11 张宇, 李慎华, 李潍, 等 高速铁路道岔数控龙门铣床的尺寸优化研究[J]. 机电工程, 2019, 36 (9): 893- 899
ZHANG Yu, LI Shen-hua, LI Wei, et al Size optimization for CNC gantry milling machine of high speed railway turnout[J]. Journal of Mechanical and Electrical Engineering, 2019, 36 (9): 893- 899
doi: 10.3969/j.issn.1001-4551.2019.09.003
12 袁波. 基于有限元法桁架机器人结构分析与优化[D]. 扬州: 扬州大学, 2018.
YUAN Bo. Analysis and optimization of truss robot structure based on finite element method [D]. Yangzhou: Yangzhou University, 2018.
13 彭军 门式起重机主梁静动态特性分析[J]. 机械与电子, 2019, 37 (9): 16- 19
PENG Jun Analysis of static and dynamic characteristics of gantry crane girder[J]. Machinery and Electronics, 2019, 37 (9): 16- 19
doi: 10.3969/j.issn.1001-2257.2019.09.004
14 彭真. 典型工况下四自由度高速重载机器人起动特性的研究 [D]. 河北: 燕山大学, 2015.
PENG Zhen. The research of staring characteristics on 4D of high-speed and heavy-load robot in the typical condition [D]. Hebei: Yanshan University, 2015.
15 LI D F, CHEN S Y, HUANG H, et al Improved genetic algorithm with two-level approximation for truss topology optimization[J]. Structural and Multidisciplinary Optimization, 2014, 49 (5): 795- 814
doi: 10.1007/s00158-013-1012-8
16 JAMARIYA V N, PANCHAL D D, TARE S R. Structural optimization of truss using finite element analysis [C]//International Conference on Smart City and Emerging Technology. Mumbai: IEEE, 2018: 1-5.
17 SOROKIN S V, NIELSEN J B, OLHOFF N Analysis and optimization of energy flows in structures composed of beam elements – Part Ⅱ: examples and discussion[J]. Structural and Multidisciplinary Optimization, 2001, 22 (1): 12- 23
doi: 10.1007/s001580100121
18 李世杰, 郑培飞, 温帅, 等 基于ANSYS Workbench的焊接机器人的性能分析[J]. 河北工业大学学报, 2019, 48 (4): 30- 35
LI Shi-jie, ZHENG Pei-fei, WEN Shuai, et al Performance analysis of welding robot based on ANSYS Workbench[J]. Journal of Hebei University of Technology, 2019, 48 (4): 30- 35
19 AGARWAL S, VASAN A. Computational strategy for structural analysis, design, and optimization of trusses using genetic algorithm and particle swarm optimization [C]//IEEE 6th International Conference on Advanced Computing. Bhimavaram: IEEE, 2016: 203-207.
20 曾攀. 有限元分析基础教程[M]. 北京: 清华大学出版社, 2008: 63-70.
21 孙训方, 方孝淑, 关来泰. 材料力学Ⅱ[M]. 北京: 高等教育出版社, 2002.
22 商跃进. 有限元原理与ANSYS应用指南[M]. 北京: 清华大学出版社, 2005.
23 叶爽, 刘强, 黄坤兰, 等 基于OSF和RSM的轻轨独立轮轴桥优化设计[J]. 机械强度, 2020, 42 (3): 604- 609
YE Shuang, LIU Qiang, HUANG Kun-lan, et al Optimal design of the independent wheel axle-axle based on OSF and RSM[J]. Journal of Mechanical Strength, 2020, 42 (3): 604- 609
24 曾漾, 周俊, 沈志远, 等 基于响应面法的复合材料舱壁结构优化设计[J]. 重庆大学学报, 2020, 43 (6): 82- 89
ZENG Yang, ZHOU Jun, SHEN Zhi-yuan, et al Optimization design of composite bulkhead structure based on response surface method[J]. Journal of Chongqing University, 2020, 43 (6): 82- 89
25 董恒庆. 经济回归模型及计算.[M]. 武汉: 湖北科学技术出版社, 1997.
[1] 李阳健,何伟,刘宏伟,李伟,林勇刚,顾亚京. 水平轴海流能机组传动链主动阻尼控制技术[J]. 浙江大学学报(工学版), 2020, 54(7): 1355-1361.
[2] 胡广豪,薛进学,马文举,隆志力. 芯片键合纵弯复合超声换能器的设计与试验[J]. 浙江大学学报(工学版), 2020, 54(7): 1335-1340.
[3] 刘蕴, 董冠华, 殷国富. 非接触密封失稳振动分析与结构优化[J]. 浙江大学学报(工学版), 2018, 52(7): 1390-1397.
[4] 关富玲,戴璐. 双环可展桁架结构动力学分析与试验研究[J]. J4, 2012, 46(9): 1605-1610.
[5] 雷之力,艾欣,崔明勇,刘晓. 基于模态评估法的微网串联谐振仿真[J]. J4, 2011, 45(1): 178-184.
[6] 蒋刚, 何闻, 郑建毅. 高频振动时效的机理与实验研究[J]. J4, 2009, 43(7): 1269-1272.
[7] 胡彦超 陈章位. 应用实正交多项式的多模态辨识迭代算法[J]. J4, 2008, 42(9): 1563-1567.
[8] 荆龙江 项贻强. 基于柔度矩阵法的大跨斜拉桥主梁的损伤识别[J]. J4, 2008, 42(1): 164-169.
[9] 周迅 俞小莉. 曲轴疲劳裂纹扩展速率测量的扫频法[J]. J4, 2007, 41(11): 1886-1892.
[10] 沈润杰 何闻. 大型宽频带水下振动台流固耦合动力学特性的研究[J]. J4, 2006, 40(4): 724-728.