机械工程 |
|
|
|
|
基于三维T样条的异质材料实体建模与切片 |
李斌( ),傅建中*( ) |
浙江大学 机械工程学院,浙江 杭州 310058 |
|
Solid modeling and slicing process of heterogeneous materials based on trivariate T-splines |
Bin LI( ),Jian-zhong FU*( ) |
College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China |
1 |
KOU X Y, TAN S T Heterogeneous object modeling: a review[J]. Computer Aided Design, 2007, 39 (4): 284- 301
doi: 10.1016/j.cad.2006.12.007
|
2 |
ZHANG B, JAISWAL P, RAI R, et al Additive manufacturing of functionally graded material objects: a review[J]. Journal of Computing and Information Science in Engineering, 2018, 18 (4): 041002.1- 041002.16
|
3 |
KUMAR V, BURNS D, DUTTA D, et al A framework for object modeling[J]. Computer-Aided Design, 1999, 31 (9): 541- 556
doi: 10.1016/S0010-4485(99)00051-2
|
4 |
ZHANG Y, HUGHES T J R, BAJAJ C L An automatic 3D mesh generation method for domains with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199 (5): 405- 415
|
5 |
YOU Y H, KOU X Y, TAN S T Adaptive tetrahedral mesh generation of 3D heterogeneous objects[J]. Computer-Aided Design and Applications, 2015, 12 (5): 580- 588
doi: 10.1080/16864360.2015.1014736
|
6 |
HUGHES T J R, COTTRELL J A, BAZILEVS Y Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194 (39-41): 4135- 4195
doi: 10.1016/j.cma.2004.10.008
|
7 |
HUA J, HE Y, QIN H. Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines [C]// Symposium on Solid Modeling and Applications. Genoa: ACM, 2004: 47-58.
|
8 |
HUA J, HE Y, QIN H Trivariate simplex splines for inhomogeneous solid modeling in engineering design[J]. Journal of Computing and Information Science in Engineering, 2005, 5 (2): 149- 157
doi: 10.1115/1.1881352
|
9 |
ZHANG Y, BAZILEVS Y, GOSWAMI S, et al Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196 (29/30): 2943- 2959
|
10 |
SASAKI Y, TAKEZAWA M, KIM S, et al Adaptive direct slicing of volumetric attribute data represented by trivariate B-spline functions[J]. International Journal of Advanced Manufacturing Technology, 2017, 91 (5-8): 1791- 1807
doi: 10.1007/s00170-016-9800-0
|
11 |
SEDERBERG T W, ZHENG J, BAKENOV A, et al T-splines and T-NURCCs[J]. ACM Transactions on Graphics, 2003, 22 (3): 477- 484
doi: 10.1145/882262.882295
|
12 |
SEDERBERG T W, CARDON D, FINNIGAN G, et al T-spline simplification and local refinement[J]. ACM Transactions on Graphics, 2004, 23 (3): 276- 283
doi: 10.1145/1015706.1015715
|
13 |
ESCOBAR J M, CASCON J M, RODRIGUEZ E, et al A new approach to solid modeling with trivariate T-splines based on mesh optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200 (45/46): 3210- 3222
|
14 |
LI B, LI X, WANG K, et al. Generalized polycube trivariate splines [C]// 2010 Shape Modeling International Conference. Aix-en-Provence: IEEE, 2010: 261-265.
|
15 |
WANG K, LI X, LI B, et al Restricted trivariate polycube splines for volumetric data modeling[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18 (5): 703- 716
doi: 10.1109/TVCG.2011.102
|
16 |
ZHANG Y, WANG W, HUGHES T J R Solid T-spline construction from boundary representations for genus-zero geometry[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 249-252: 185- 197
doi: 10.1016/j.cma.2012.01.014
|
17 |
WANG W, ZHANG Y, LIU L, et al Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology[J]. Computer-Aided Design, 2013, 45 (2): 351- 360
doi: 10.1016/j.cad.2012.10.018
|
18 |
MARTIN W, COHEN E. Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework [C]// Proceedings of the 6th ACM Symposium on Solid Modeling and Applications. New York: ACM, 2001: 234-240.
|
19 |
LIN H, JIN S, HU Q, et al Constructing B-spline solids from tetrahedral meshes for isogeometric analysis[J]. Computer Aided Geometric Design, 2015, 35-36: 109- 120
doi: 10.1016/j.cagd.2015.03.013
|
20 |
LENG J, XU G, ZHANG Y Medical image interpolation based on multi-resolution registration[J]. Computers and Mathematics with Applications, 2013, 66 (1): 1- 18
doi: 10.1016/j.camwa.2013.04.026
|
21 |
JIA Y, ZHANG Y, RABCZUK T A novel dynamic multilevel technique for image registration[J]. Computers and Mathematics with Applications, 2015, 69 (9): 909- 925
doi: 10.1016/j.camwa.2015.02.010
|
22 |
PAWAR A, ZHANG Y, ANITESCU C, et al DTHB3D_Reg: dynamic truncated hierarchical B-spline based 3D nonrigid image registration[J]. Communications in Computational Physics, 2018, 23 (3): 877- 898
|
23 |
PAWAR A, ZHANG Y, ANITESCU C, et al Joint image segmentation and registration based on a dynamic level set approach using truncated hierarchical B-splines[J]. Computers and Mathematics with Applications, 2019, 78 (10): 3250- 3267
doi: 10.1016/j.camwa.2019.04.026
|
24 |
LI B, FU J, ZHANG J Y, et al Slicing heterogeneous solid using octree-based subdivision and trivariate T-splines for additive manufacturing[J]. Rapid Prototyping Journal, 2020, 26 (1): 164- 175
doi: 10.1108/RPJ-11-2018-0287
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|