Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 135-144    DOI: 10.3785/j.issn.1008-973X.2021.01.016
机械工程     
基于三维T样条的异质材料实体建模与切片
李斌(),傅建中*()
浙江大学 机械工程学院,浙江 杭州 310058
Solid modeling and slicing process of heterogeneous materials based on trivariate T-splines
Bin LI(),Jian-zhong FU*()
College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1712 KB)   HTML
摘要:

为了实现异质材料实体模型应用于增材制造技术的可能性,开发通用的、可同时用于设计、分析和制造异质材料实体模型的建模与制造工艺. 提出基于三维T样条的异质材料实体重建方法,实施自适应细分得到三维T型控制网格. 通过最小化能量泛函逐步拟合四面体网格模型及异质材料属性,使得几何结构和材料分布均得到较高的拟合精度. 为了提高重建过程的计算效率,只对局部误差较大的区域进行自适应细分,在参数域内插入控制点. 采用自适应细分的三维T样条与均匀细分的三维NURBS,分别实施渐进式重建框架. 结果表明,三维T样条能够在达到相似甚至更优的拟合精度的前提下减少冗余控制点. 针对增材制造中的切片工艺,利用适用于异质材料实体模型的直接切片方法,结合三维T样条和基于八叉树结构的自适应细分过程,得到三角网格分层切片结果. 实验结果表明,该算法对异质材料实体模型的直接切片过程是有效和可靠的.

关键词: 异质材料实体模型重建三维T样条增材制造直接切片方法    
Abstract:

A general modeling and manufacturing process that can be used to design, analyze and manufacture heterogeneous material solids was developed in order to apply heterogeneous material solids into additive manufacturing technology. A modeling algorithm for heterogeneous material solids was proposed based on trivariate T-splines. T-mesh was adaptively refined based on the unit cubic. Then the tetrahedral mesh model and its heterogeneous materials were gradually fitted by minimizing the defined energy functional. Adaptive refinement was conducted only in those regions that undergo fine-scale deformation and updated control points were directly inserted in the parametric domain in order to improve computational efficiency. The comparison between trivariate T-splines with adaptive refinement and trivariate NURBS with uniform refinement shows the computational efficiency with much fewer control points. A direct slicing algorithm sliced heterogeneous material solid as the triangular meshes by combining trivariate T-splines and adaptive subdivision process based on the octree structure. The experimental results demonstrated the effectivity and reliability especially for slicing solid heterogeneous objects.

Key words: heterogeneous material    solid modeling    trivariate T-spline    additive manufacturing    direct slicing algorithm
收稿日期: 2020-04-24 出版日期: 2021-01-05
CLC:  TH 164  
基金资助: 国家基金-浙江省两化融合联合基金资助项目(U1609207)
通讯作者: 傅建中     E-mail: lib1992@zju.edu.cn;fjz@zju.edu.cn
作者简介: 李斌(1992—),男,博士生,从事CAD/增材制造的研究. orcid.org/0000-0003-1663-801X. E-mail: lib1992@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李斌
傅建中

引用本文:

李斌,傅建中. 基于三维T样条的异质材料实体建模与切片[J]. 浙江大学学报(工学版), 2021, 55(1): 135-144.

Bin LI,Jian-zhong FU. Solid modeling and slicing process of heterogeneous materials based on trivariate T-splines. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 135-144.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.016        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/135

图 1  异质材料实体的重建框架
图 2  三维T型控制网格的自适应初始化过程
图 3  股骨下端模型的渐进式重建过程
图 4  基于3种不同的细分精度的分层T网格
图 5  基于图4所示的分层T网格的直接切片过程
图 6  股骨上端模型的渐进式重建过程
图 7  橡皮鸭模型的渐进式重建过程
实验模型 三维T样条 nc $ \varepsilon $ ni RS/%
股骨下端 $ G\left({{x}}\right) $ 17 409 0.6 20 86.76
股骨下端 $ M\left({{x}}\right) $ 17 409 0.6 25 90.13
股骨上端 $ G\left({{x}}\right) $ 21 659 0.6 23 85.33
股骨上端 $ M\left({{x}}\right) $ 21 659 0.6 27 88.03
橡皮鸭 $ G\left({{x}}\right) $ 27 455 0.4 23 80.47
橡皮鸭 $ M\left({{x}}\right) $ 27 455 0.4 16 88.66
表 1  基于三维T样条的异质材料实体建模结果
实验模型 三维NURBS nc $ \varepsilon $ ni RS/%
股骨下端 $ G\left({{x}}\right) $ 68 921 0.6 25 84.57
股骨下端 $ M\left({{x}}\right) $ 68 921 0.6 27 82.66
股骨上端 $ G\left({{x}}\right) $ 64 000 0.6 28 84.62
股骨上端 $ M\left({{x}}\right) $ 64 000 0.6 27 85.92
橡皮鸭 $ G\left({{x}}\right) $ 54 872 0.4 31 83.84
橡皮鸭 $ M\left({{x}}\right) $ 54 872 0.4 19 90.27
表 2  基于三维NURBS的异质材料实体建模结果
图 8  股骨下端模型的直接切片结果
图 9  股骨上端模型的直接切片结果
图 10  橡皮鸭模型的直接切片结果
图 11  股骨下端模型的等材料面提取结果
图 12  股骨上端模型的等材料面提取结果
图 13  橡皮鸭模型的等材料面提取结果
1 KOU X Y, TAN S T Heterogeneous object modeling: a review[J]. Computer Aided Design, 2007, 39 (4): 284- 301
doi: 10.1016/j.cad.2006.12.007
2 ZHANG B, JAISWAL P, RAI R, et al Additive manufacturing of functionally graded material objects: a review[J]. Journal of Computing and Information Science in Engineering, 2018, 18 (4): 041002.1- 041002.16
3 KUMAR V, BURNS D, DUTTA D, et al A framework for object modeling[J]. Computer-Aided Design, 1999, 31 (9): 541- 556
doi: 10.1016/S0010-4485(99)00051-2
4 ZHANG Y, HUGHES T J R, BAJAJ C L An automatic 3D mesh generation method for domains with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199 (5): 405- 415
5 YOU Y H, KOU X Y, TAN S T Adaptive tetrahedral mesh generation of 3D heterogeneous objects[J]. Computer-Aided Design and Applications, 2015, 12 (5): 580- 588
doi: 10.1080/16864360.2015.1014736
6 HUGHES T J R, COTTRELL J A, BAZILEVS Y Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194 (39-41): 4135- 4195
doi: 10.1016/j.cma.2004.10.008
7 HUA J, HE Y, QIN H. Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines [C]// Symposium on Solid Modeling and Applications. Genoa: ACM, 2004: 47-58.
8 HUA J, HE Y, QIN H Trivariate simplex splines for inhomogeneous solid modeling in engineering design[J]. Journal of Computing and Information Science in Engineering, 2005, 5 (2): 149- 157
doi: 10.1115/1.1881352
9 ZHANG Y, BAZILEVS Y, GOSWAMI S, et al Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196 (29/30): 2943- 2959
10 SASAKI Y, TAKEZAWA M, KIM S, et al Adaptive direct slicing of volumetric attribute data represented by trivariate B-spline functions[J]. International Journal of Advanced Manufacturing Technology, 2017, 91 (5-8): 1791- 1807
doi: 10.1007/s00170-016-9800-0
11 SEDERBERG T W, ZHENG J, BAKENOV A, et al T-splines and T-NURCCs[J]. ACM Transactions on Graphics, 2003, 22 (3): 477- 484
doi: 10.1145/882262.882295
12 SEDERBERG T W, CARDON D, FINNIGAN G, et al T-spline simplification and local refinement[J]. ACM Transactions on Graphics, 2004, 23 (3): 276- 283
doi: 10.1145/1015706.1015715
13 ESCOBAR J M, CASCON J M, RODRIGUEZ E, et al A new approach to solid modeling with trivariate T-splines based on mesh optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200 (45/46): 3210- 3222
14 LI B, LI X, WANG K, et al. Generalized polycube trivariate splines [C]// 2010 Shape Modeling International Conference. Aix-en-Provence: IEEE, 2010: 261-265.
15 WANG K, LI X, LI B, et al Restricted trivariate polycube splines for volumetric data modeling[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18 (5): 703- 716
doi: 10.1109/TVCG.2011.102
16 ZHANG Y, WANG W, HUGHES T J R Solid T-spline construction from boundary representations for genus-zero geometry[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 249-252: 185- 197
doi: 10.1016/j.cma.2012.01.014
17 WANG W, ZHANG Y, LIU L, et al Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology[J]. Computer-Aided Design, 2013, 45 (2): 351- 360
doi: 10.1016/j.cad.2012.10.018
18 MARTIN W, COHEN E. Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework [C]// Proceedings of the 6th ACM Symposium on Solid Modeling and Applications. New York: ACM, 2001: 234-240.
19 LIN H, JIN S, HU Q, et al Constructing B-spline solids from tetrahedral meshes for isogeometric analysis[J]. Computer Aided Geometric Design, 2015, 35-36: 109- 120
doi: 10.1016/j.cagd.2015.03.013
20 LENG J, XU G, ZHANG Y Medical image interpolation based on multi-resolution registration[J]. Computers and Mathematics with Applications, 2013, 66 (1): 1- 18
doi: 10.1016/j.camwa.2013.04.026
21 JIA Y, ZHANG Y, RABCZUK T A novel dynamic multilevel technique for image registration[J]. Computers and Mathematics with Applications, 2015, 69 (9): 909- 925
doi: 10.1016/j.camwa.2015.02.010
22 PAWAR A, ZHANG Y, ANITESCU C, et al DTHB3D_Reg: dynamic truncated hierarchical B-spline based 3D nonrigid image registration[J]. Communications in Computational Physics, 2018, 23 (3): 877- 898
23 PAWAR A, ZHANG Y, ANITESCU C, et al Joint image segmentation and registration based on a dynamic level set approach using truncated hierarchical B-splines[J]. Computers and Mathematics with Applications, 2019, 78 (10): 3250- 3267
doi: 10.1016/j.camwa.2019.04.026
24 LI B, FU J, ZHANG J Y, et al Slicing heterogeneous solid using octree-based subdivision and trivariate T-splines for additive manufacturing[J]. Rapid Prototyping Journal, 2020, 26 (1): 164- 175
doi: 10.1108/RPJ-11-2018-0287
[1] 刘晓伟,陈赟,张思,陈康. FDM型增材制造中送丝机构动态监测与识别[J]. 浙江大学学报(工学版), 2021, 55(3): 548-554.
[2] 杜军,马琛,魏正英. 基于视觉传感的铝合金电弧增材沉积层形貌动态响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1481-1489.
[3] 邵惠锋, 贺永, 傅建中. 增材制造可降解人工骨的研究进展——从外形定制到性能定制[J]. 浙江大学学报(工学版), 2018, 52(6): 1035-1057.
[4] 杜军, 王鑫, 任传奇, 白浩. 金属熔融涂覆成形薄壁件表面形貌与工艺[J]. 浙江大学学报(工学版), 2018, 52(1): 24-28.